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SUMMARY: The MG/FG/UfG project addresses the question-- 
How can reliable and accurate neutron flux distributions be 
determined to enable Multigroup(MG), Fine-Group(FG) and 
Ultra-fine-Group(UfG) cross section processing?  The answer, 
proposed here, is in the development of new and innovative 
strategies for solving the neutron transport and diffusion equations 
through the method of panels.  These strategies include application 
of new analytical methods, convergence acceleration, numerical 
Fourier transform inversion and automated nuclear data access.  
The intent of this project is to provide a basis for future 
development that will promote routine use of UfG processing in 
nuclear reactor physics investigations.  While initially focused on 
verification of the CENTRM code, for reasons to be discussed, the 
project took on a wider, more basic, view of neutron transport and 
diffusion theories resulting in new theory, numerical methods, 
solutions and challenges. 
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Abstract (Research Proposed) 
The generation of multigroup cross sections lies at the heart of the NGNP core 
design whether it is the prismatic (block) or pebble-bed type.  The process, 
generally performed in three steps, is quite involved and its execution crucial to 
proper reactor physics analyses that follow.  Currently, the CENTRM cross 
section processing module of the SCALE code package has yet to be applied to 
prismatic or pebble-bed core designs.  The primary deliverable of this proposal 
will be to provide that capability.  The deliverable will include a detailed outline 
of the entire processing procedure for application of CENTRM in a final report 
complete with demonstration.  In addition, the report will include a thorough 
verification of the CENTRM code.  Such a verification has yet to be performed 
for the CENTRM code, even at ORNL, the originating laboratory.  In this way, 
verification and application are the overall outcome. 
 
Modified Abstract (Research Performed) 
The generation of multigroup cross sections lies at the heart of nuclear reactor 
core design.  The process, generally performed in three steps, is quite involved 
and its execution crucial to proper reactor physics analyses that follow.  Here, 
we investigate Multigroup (MG), Fine-Group (FG) and Ultra-fine-group (UfG) 
algorithms for neutron slowing down through the method of panels.  As part of 
the process, automated cross section data transfer from the BNL/NNDC 
(National Nuclear Data Center) and subsequent preparation were developed.  
Efficient data access enabled accurate slowing down algorithms via panels in an 
infinite medium as well as analytical and finite difference multigroup/fine-group 
diffusion and transport algorithms.  While the method of panels algorithm could 
not be implemented to the extent initially envisioned, the panel algorithm has 
been demonstrated for slowing down in an infinite medium and for diffusion and 
transport in heterogeneous slabs.  In addition, the panel algorithm has been 
theoretically demonstrated in the BL approximation and for spatial transport in 
an infinite medium as well as for spherical and cylindrical heterogeneous media 
in analytical diffusion theory. Finally, the algorithm has served as a benchmark 
for the SCALE/CENTRM code. 
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I. PROJECT BACKGROUND/SUMMARY/HISTORY 
1. Project background 
The NEUP grant, known as the MultiGroup(MG)/Fine-Group(FG)/Ultra-fine-
Group(UfG), i.e., (MG/FG/UfG)1, project was motivated by presentations at 
the DoE/NEUP session held in Salt Lake City in 2008 to introduce future DoE 
needs to Universities in order to solicit proposals.  In particular, D. Petti and H. 
Gougar indicated, as captured in Fig. 1, the need for new reactor physics 
methods.  The key words in their presentations were “Analytical tools ” and 
“New approaches to slowing down”.  It was refreshing to see these topics were 
to be emphasized in NEUP research.  The inability of multigroup methods alone 
to account properly for neutron absorption in resonances has always been an 
issue in reactor physics analysis.  However, in the past, because numerical 
algorithms were limited by computational speed and storage, we were faced with 
a zero sum game.  If we require more spectral detail, then one must sacrifice 
spatial or angular detail.  Now, with increased computational resources, one can 
begin to address UfG methods.  For increased spectral characterization, success 
was finally achieved with the CENTRM code [1], developed for the SCALE 
[2] suite of codes.  For the first time, a robust UfG code was developed for 
practitioners that could routinely output upwards of 70K group fluxes in infinite 
and (now) in 1D media.  This was a substantial ORNL project headed by an 
expert in this area, Dr. Mark Williams.  It was apparent, that an independent 
benchmark could give the CENTRM effort additional credibility.  This then 
became one of the foci of the MG/FG/UfG project proposal submitted by PI B. 
Ganapol of the University of Arizona.  In particular, approximately 20 years ago, 
the PI had developed a slowing down algorithm that used a method of panels by 
considering slowing down through segmenting contiguous energy regions-- 
approximately 100 groups each.  Consequently, one treats a series of multigroup 
slowing down problems, rather than one large FG/UfG problem.  It was thought 
that there would be an efficiency in such a procedure.  The efficiency would be 
in computational time and in allowing conventional off-the-shelf codes to be 
stacked into multiple multigroup calculations to achieve UfG flux distributions.  
In addition, it was believed that we could incorporate accurate 1D discrete 
ordinates transport as well as analytical 1D diffusion theory in the panel 
formalism.  However, this could not be accomplished to the extent proposed; 
nevertheless, with the advances to be described, are very real possibilities 
considering HPC. 
 

                                         
1 If N is the number of groups, then Few-Group is N < 10; Multigroup 11 < N < 300;  
  Fine-Group 301 < N < 10000; UfG is N > 10001. 
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The initial step in cross section processing is accessing the ENDF/B database for 
construction of intermediate cross section sets from which one eventually 
constructs multigroup cross sections by collapsing fine-or ultra-fine cross 
sections over FG or UfG flux distributions. For this purpose, the CENTRM 
algorithm was developed as part of the SCALE code package to process 
granular pointwise  
 

Fig. 1. Power point slides from presentations by D. Petti and H. Gougar  
           indicating a need for a MG/FG/UfG project. 
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and groupwise cross sections to generate UfG flux spectra.  In this way, one 
includes spectral neutron transport information along with isotopics to establish 
reactor-specific spectra.  In particular, one incorporates the necessary detail to 
characterize resonance self-shielding by first forming a CENTRM library form 
AMPX/POLIDENT as a mixture of pointwise and group cross sections in a 
spectral region.  Spatial and temperature information, integrated into the cross 
section set through transport calculations in an infinite lattice, result in a UfG 
flux distribution.  The ultra-fine flux is then used to collapse to the multigroup 
cross sections for transport or diffusion theory lattice calculations.  Finally, these 
are collapsed to a few groups for a 3D whole core flux calculation-- the final 
step in the cross section generation process. 
 
2. Project summary 
While the CENTRM code is the state-of-the-art for cross section generation, 
there is always need for further verification and improvement.  A part of this 
project therefore concerns independent verification.  An entirely independent 
method of determining the flux distribution for a large number of energy groups, 
more than 70,000, is proposed and tested with regard to scaling.  In our proposed 
concept, we form manageable panels of less than 100 groups each to expedite a 
UfG solution.  This concept is tested in the high energy slowing down region 
were panels are a natural way to treat spectral transport.  We begin with the 
infinite medium (zero dimensions) and progress to 1D- geometries.  The key 
feature is the decomposition of a large number of initial groups into smaller, 
more manageable, sub-groups.  In this way, N, the number of groups, where N 
could be as large as 100,000 required in the resonance region, is decomposed 
into an additive number of G-group problems where G << N.  Of course, we can 
most readily accomplish this in the purely slowing down region, where panels 
are coupled only through down scatter--but what about the inclusion of 
upscatter?  In this case, we envision an iteration through the panels—a strategy 
that adjusts to the spectrum as needed because of the panel format.  Iteration, 
however, is left to the future. 
 
We initially demonstrate scaling of the solution for slowing down in multi-
resonances without spatial variation.  Included in the demonstration, is a 
comparison to CENTRM infinite medium results as an independent verification.  
Before considering spatial variation in the panel formalism, we derive new 
analytical solution to the BL equations suitable for panels.  We then attempt to 
adapt analytical diffusion theory into the panel method.  While this was only 
partially successful, we were able to demonstrate the analytical approach for 
multigroup/fine-group (MG/FG) calculations, which had not previously been 
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accomplished.  The next phase attempts a 1D transport solution in the infinite 
cell approximation in plane geometry.  We propose a converged accelerated 
neutron transport algorithm based on discrete ordinates.  The formulation, 
including anisotropic scattering, uses the concept of convergence acceleration to 
provide at least five-place accuracy.  While, this is possibly more accurate than 
required for routine reactor physics analysis, such accuracy may be important in 
future reactor physics applications and certainly presents a challenge.  
Accelerated convergence is based on the diamond difference approximation to 
the fully discretized transport equation.  When each discretization in space and 
angle is considered an element in a sequence that eventually should converge to 
the desired solution in the limit of zero discretization and an infinite number of 
directions, the Wynn-epsilon (W-e) and/or Richardsons algorithms can 
accelerate convergence.  Consequently, a solution is viewed as a sequence of 
discretized solutions to be extrapolated to their limit.  This concept provides 
high accuracy and is essentially independent of the choice of discretization 
scheme.  Converged accelerated transport, however, could only be applied to the 
multigroup approximation, but continues as a part of active FG/UfG research.  
A Fourier transform inversion in an infinite medium however, has been derived 
and shows promise for FG transport. 
 
In the process of developing the analytical and numerical solutions described 
above, the MG/FG/UfG team has also developed automated cross section 
transfer capability, an energy grid selection for multimaterials and initiated a 
burnup application. 
 
2.1. Proposed objective and tasks 
Based on the initial proposal and the status of the NGNP project at the start of 
the grant, the following was the originally proposed objective: 
 

Provide an independent verification of the CENTRM Ultra-fine-Group 
(UfG) processing code applied to the NGNP prismatic and pebble-bed 
core designs. 

 

to be completed according to the following tasks: 
 

 1. Thorough testing of the panel algorithm for slowing down. 
 2. Development of the panel algorithm for multimaterials. 

3.Establishment of a multigroup convergence 1D transport acceleration 
algorithm in the panel formalism. 

      4. Verification of CENTRM in 1D plane geometry. 
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5. Creation and testing of the corresponding transport/panel algorithm in 
spherical and cylindrical geometries. 
6. Formulation of a 2D solution in terms of discretized Green’s functions. 
7. Application or the verified CENTRM code to current NGNP core 
design configurations configured in an infinite lattice including Dancoff 
corrections to simulate Triso/pebble heterogeneity where appropriate. 

 
As with most research projects, the success of the proposed research at the time 
it is proposed is usually unknown.  This was the case for the MG/FG/UfG 
project.  While the success of the panel form for slowing down in an infinite 
medium was relatively certain, this was not so including spatial variation—
especially for transport theory.  For this reason, the objective and tasks were 
modified to include diffusion theory, as this would be nearly as valuable as 
transport theory and more certain of success.  In particular, analytical diffusion 
theory in 1D geometries had recently been developed by the PI and seemed 
promising for UfG application-- or more correctly-- for FG application.  While 
this turned out to be true in theory, in practice, the matrix diagonalization, upon 
which the panel diffusion theory was based, was unstable and the computing 
time unreasonable.  Again, the objective and tasks with respect to the application 
of panels and spatial diffusion were modified to apply to a single panel only, 
which is the multigroup or fine-group application.  In addition, working with 
large amounts of data and the CENTRM code proved to be formidable because 
of the different models used.  However, benchmarking was indeed 
accomplished, but not to the extent originally envisioned.  That is to say, in 
general, the difficulties in achieving exactly what had been initially proposed 
were underestimated.  This coupled with significant bureaucratic delays in hiring 
and the transfer of funds as well as the change in DoE’s NGNP mission led to a 
request for an additional year at no cost.  All of these events contributed to 
modification of the originally proposed objective and tasks outlined above to 
(Note: Cross out of the proposed language and addition of new language 
emboldened) 
 
2.2. Modified objective and tasks 

Provide an independent verification of the CENTRM Ultra-fine-Group 
(UfG) processing code applied to the NGNP prismatic and pebble-bed 
core designs. and develop new analytical/numerical multigroup, fine-
group and UfG transport and diffusion methods. 

 

to be completed according to the following modified tasks: 
 

 1. Thorough testing of the panel algorithm for slowing down. 
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 2. Development of the panel algorithm for multimaterials. 
3. Establishment of a multigroup/fine- group converged 1D transport 
(and diffusion) accelerated algorithms in the panel formalism. 

      4. Verification of CENTRM in 1D plane infinite geometry. 
5. Creation and testing of the corresponding transport diffusion/panel 
multigroup algorithm in spherical and cylindrical geometries. 
6. Formulation of a 2D solution in terms of discretized Green’s functions. 
7. Application of the verified CENTRM code to current NGNP core 
design configurations configured in an infinite lattice including Dancoff 
corrections to simulate Triso/pebble heterogeneity where appropriate. 
The last two tasks are to be replaced by 
6. Burnup mapping with analytical diffusion theory. 

 
3. Project history 
In the following, we present a brief history of the events that have shaped the 
outcome of our NEUP project. 
 
Prior to the start of the grant, a slowing down algorithm had been developed [3] 
for the verification of the COMBINE spectral code developed over about 30 
years at INL.  This was an initial attempt using what is called Continuous 
Analytical Continuation (CAC) to solve the slowing down equation 
mathematically embedded as a pseudo-time dependent problem.  The algorithm 
appears in Ch. 2 of the PI’s book on benchmarks in neutron transport theory [4].  
Since the slowing down equations form a lower triangular matrix, the solution is 
simply a downward cascade, so CAC is considered overkill by some.  However, 
if there is up-scatter this is not the case.  Therefore, considering slowing down 
only, another numerical method had to be constructed, but having CAC as a 
benchmark provided a consistent verification.  The next issue, which turned into 
major undertaking, was acquiring data since we obviously must go beyond the 
167 group COMBINE data in order to proceed to FG/UfG.  Fortunately, the 
BNL/NNDC library was accessible for all data required—but how can the data 
transfer be accomplished efficiently?  It was soon realized that, we would need 
to transmit hundreds of thousands cross sections quickly and reliably.  Initially, 
the transfer was by hand but in the final year of the grant was automated. 
 
During the first year, it became abundantly clear that the PI could not complete 
the tasks on his own and additional help was required.  Since an appropriate post 
doc could not be found, the PI reached out to his colleague, Professor Ivan 
Maldonodo, at the University of Tennessee, Knoxville (UTK), where the PI is a 
research professor.  A seemingly interested student, Shawn Wachter, was 
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identified at UTK and a sub-contract was signed and submitted to both 
universities.  For whatever reason, UA did not execute the contract in a timely 
manner, significantly delaying the effort by about 6 months.  In addition, the 
student identified to complete his Ph.D. under this grant became distracted and 
was dropped from the project and another interested student, Robby Joseph, was 
identified.  During this period, the PI supervised a visiting student scholar, Elia 
Battistini, on scholarship from the University of Bologna.  Elia began the 
prototype MATLAB development of the FG/UfG application of neutron 
diffusion and was instrumental in completing Task 3.  In addition, to begin to 
explore how the cross section transfer could be automated, we hired freshman 
Blake Tye as a software advisor to see if JAVA could be the preferred language 
to accomplish data transfer.  While, contributing some ideas, unfortunately 
Blake had some personal issues and had to concentrate on his courses, and 
subsequently quit the project. 
 
Regardless of the difficulties encountered during the first year, the infinite 
medium panel formulation and its connection to real data became operational.  
The next task was to begin verification of CENTRM for an infinite medium 
since the tool was now in place.  The PI intended (quarter time) graduate student 
Robby Joseph at UTK to complete this work.  Unfortunately, due the contract 
delays, this could not effectively begin until the second year and was one of the 
reasons a no cost extension (NCE) was eventually requested and granted.  After 
this slow start, work finally began on the verification of the CENTRM code in 
an infinite medium during the latter part of the second year.  Robby, who also 
worked at ORNL, then became a quarter time active member of the 
MG/FG/UfG team supervised by his dissertation advisor Dr. I. Maldonado, and 
reported his first comparison in the third quarter of the second year. 
 
Development and testing of the UfG algorithm in an infinite medium continued 
as well as did the development of the FG/UfG formulation of the analytical 
diffusion solution.  As year three came, we began to realize that the analytical 
solution as formulated would only produce multigroup to fine-group results on 
the order of several hundred groups without HPC.  While this was an advance, it 
was not UfG. Also, it was realized that a more reliable way of transmitting cross 
section data was needed.  This is when a year’s NCE was requested and granted 
as well as when GPU processing was suggested, which could enable the panel 
formulation of the analytical diffusion solution.  To improve data transfer 
performance, Dr. I. Guven and a freshman student Michael Futch were added to 
the team as well a Dr. C. Chan to aid in the theoretical development and 
eventually to oversee GPU development.  In addition, graduate student Aaron 
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Farbar, who had GPU experience, became a member of the team.  The MAPLE 
computer algebra package was purchased to resolve the numerical instability of 
the matrix diagonalization, which is still an ongoing effort.  It was during the 
third year that three undergraduates were added to the project.  Two seniors were 
recruited from the PI’s undergraduate reactor physics course as well as an 
interested freshman.  They were given assignments related to the computer 
algebra formulation of the analytical solution including graphical presentation 
using MATLAB, MAPLE, and OCTAVE. 
 
In the final year, we see the greatest progress in data transfer with the 
development of the PYTHON script that essentially spawns the BNL/NNDC 
site, grabs the required cross section data, brings it local, runs the UfG module 
X2 and graphs the output.  As a result, a manual and four recorded animations 
have been produced, which are primary deliverables of the project.  We also 
were able to do limited work on the GPU, but never able to achieve the speedup 
expected.  Because of purchasing delays, a larger GPU, whose purchase was 
approved by DoE, could not be made operational during the project, but is now 
operational and will continue to be a major part of continuing research. 
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II. TASK DETAILS 
We devote his section to describing progress that has been made on each of the 
modified tasks.  Each will be considered in some detail—most likely, more than 
a casual reader needs to assess the project’s accomplishments.  We transmit in 
this way so that this document represents a full record and serves as a reference 
for continuing and future MG/FG/UfG research.  The mathematical derivations 
as well as the numerical results as graphs and tables will be inserted inline as 
appropriate.  Much of the detail is taken from conference papers with additional 
extractions from quarterly reports.  It should also be emphasized that the tasks 
were not performed in chronological order and that more than one task was 
ongoing. 
 
II.1. TASK 1 Thorough testing of the panel algorithm for slowing down. 
1.1 Panel formalism: Infinite medium 
The panel slowing down description to follow is contained in the A1.SLC.PPT 
found in the APPENDIX (The APPENDIX is available upon request, all 
references to the Appendix begin with A#... .), which is a PowerPoint 
presentation presented at the NEUP/NGNP Cooperative Methods R&D 
Workshop whose objectives are stated on Slide 1.  (Note: Some of the key slides 
are reproduced here so as not to duplicate the reporting effort.) 
 

 
Slide 1 
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The general slowing down equation in an infinite medium, which is our focus, is 
shown on Slide 2.  If we assume a source of neutrons enters a spectral region as 
shown on Slide 3, then the specific slowing down equation to be solved without 
fission is shown on Slide 4.  This is an integral equation requiring discretization, 
 

 
Slide 2 

 

 
Slide 3 
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Slide 4 

 
which is essentially the multigroup treatment to be chosen.  As indicated on 
Slide 4, there are 4 primary multigroup (MG) treatments.  In this project, we 
exclusively choose the multigroup form, which is described on Slides 5-7.  This 
not to say 
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Slide 5 

 
Slide 6 

 

 
Slide 7 
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the other treatments are inferior, as they may not be.  It only makes the statement 
that there simply was not enough time in the project to consider all four 
possibilities in sufficient detail.  In reality, the multigroup Lagrange 
interpolation may indeed be the most efficient, since it includes an error 
estimate--- a conjecture that needs to be shown however.  In the MG form, the 
MG balance equation results as shown in Slide 6 with the MG transfer cross 
sections given in Slide 7.  The unique feature of the formulation presented is 
that, if we assume a 1/E weighting spectrum, the MG transfer cross sections are 
determined analytically.  This is unlike most MG evaluations that find the 
multigroup parameters approximately.  This can only be done for media of zero 
temperature however.  The panel concept is now applied to enable the solution 
of the slowing down equation for upwards of 70K groups, which is the UfG 
challenge. 
 
 

 
Slide 8 

 

Slide 8 shows the panel configuration, where a source from the adjacent panel 
above is assumed to feed into the panel below as to form a fixed source for the 
FG/UfG calculation.  The focus now turns to a single panel l as shown in Slide 
9.  The two neutron sources are external Q and down scatter from region R, 
(defined on Slide 9).  The flux is found from the solution to the following set of 
linear equations: 
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( 1)
1

1 1 1 ( 1)

l G RJ G J
l l l

g g sjgg g sjgr r g
j g j r l G

Qφ φ φ
− −

−
ʹ′ ʹ′ ʹ′ ʹ′

ʹ′ ʹ′= = = = −

Σ = Σ + Σ +∑∑ ∑ ∑ . (1) 
 

Our initial investigation was primarily concerned with the single material 
slowing down equation (J = 1) for the scalar group flux 

l
gφ  in a single panel. 

The superscript l refers to an artificial partition of the energy interval of interest 
into subintervals or panels as shown in Slide 9.  The second to last term on the 
right hand side of Eq(1) represents the neutron source from panel l-1 (or above) 
slowing down into panel l.  In this way, we sequentially cover the entire energy 
range through the linking of panels.  In general, one can find numerical solutions 
to Eq(1) through the continuous analytical continuation (CAC [1]) formulation 
or direct solution through matrix inversion.  In the CAC form shown in Slide 10, 
the solution, embedded in a fictitious time-dependent problem, results when we 
assume a source steady in time.  In this case, time serves an iteration index.  
Taken to steady state then gives the desired slowing down distribution.  Further, 
we resolve the resulting equation through a Taylor series, converged to high 
accuracy via a Wynn-epsilon (W-e) convergence accelerator [2].  The CAC 
solution is the most general since it will accommodate upscatter, but only for a 
single panel.  We will consider this approach as an alternative and a verification 
of what is next proposed.  The direct matrix inversion also offers solutions with 
upscatter, but certainly is not as elegant as CAC. 
 
In first encountering panels in the down scatter approximation, their advantage is 
not obvious.  After all, the pure infinite medium slowing down problem is just a 
lower triangular matrix requiring only the recurrence of Eq(1)-- what could be 
simpler.  However, complications could arise with recurrence for N = ~100,000 
groups since roundoff error accumulation will eventually destroy the calculation.  
On the other hand, direct inversion of the full N×N matrix when N is large is not 
convenient even in today’s large-scale computational environment.  Thus, 
reformulating the solution of the slowing down equation in terms of N/G lower 
order algebraic equations, where G is the number of groups per panel, presents a 
reasoned approach.  Consequently, the matrix inversion, or convergence to 
steady state, involves G-groups of approximately 100, rather than N-groups on 
the order of 100,000. 
 
In principle, by recasting a large slowing down calculation into many smaller 
ones, potentially the number of groups is unlimited.  While we are considering N 
approximately to be 100K here, with faster sequential processors and parallel 
computing strategies, we could conceive of millions of groups in the future.  
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Thus, the proposed algorithm is positioned to be appropriate for even larger 
slowing down problems. 
 
Since we track the slowing down source, we can include this source via input 
into existing multigroup codes, which then treats each panel consecutively by 
stacking now including spatial dependence.  Thus, without modification, routine 
multigroup transport or diffusion codes can generate space dependent FG/UfG 
weighting spectra directly from down scattering in a panel format. 
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Slide 10 

 
1.2 Generation of ENDF/B cross section data: Format 
Nuclear data plays a central role in the development of a UFG capability.  For 
this reason, it is imperative that a straightforward connection to the ENDF 
nuclear data files at BNL/National Nuclear Data Center be a priority.  As the 
research progressed, this phase of development has undergone several 
implementations, from a “by hand” to automated, as will be shown.  The final 
implementation however, was guided by the format to be described. 
 

a. ENDF/B data preparation 
In this section, we consider accessing ENDF/B cross section data from 
BNL(NNDC) through the URL 
 

http://www.nndc.bnl.gov/exfor/endf00.jsp. 
 
When spawned, the URL produces Fig.1.  One then follows instructions to 
choose specific isotopes of interest.  As shown in Fig.2, 235U is chosen as the 
“Target”, requesting the neutron total cross section, n,tot for the “reaction” and 
the cross section, sig, as the “quantity”.  When submitted, Fig. 3 appears 
indicating all the possible data resource options.  Next, one can plot the ENDF 
data (Fig.4a) to observe spectral regions of interest.  In addition, by selecting 
(clicking on) a specific region, one can zoom in on a particular energy range.  As 
a demonstration of the ENDF interface, we will concentrate on the start of the 
resolved resonances,  
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Fig. 1. BNL/NNDC webpage. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Choose isotope and reaction. 
 

 

Change to n,el 
for scattering 
information 
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Fig. 3. After submission of choices, indicate which data collection to use. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Click to 
view 

Fig. 4a. Plot data if desired. 
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           Fig. 4b. Zoom to energies of interest—start of the resolved resonance  
                        region. 
 
103eV to 104eV, as shown in Fig.4b.  To generate a data file of total cross 
sections for this range only, the σ- button (Fig. 3) is clicked to give the following 
page: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5a. Listed cross sections over desired range. 
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where the data for the full range is listed on the left and the range choice is on 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5b. Change energy limits to desired range. 
 
the right.  We next change the range to our desired range (in eV) and submit to 
generate the linearly interpolated cross sections on the left as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5c. Cross sections displayed in range desired. 
 
Finally, the file generated is saved on a secondary file (called Xsec.file) with the 
following name: 
 
                                            el.atw.int.dat 

Change 
limits 
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where 

el  Element/two characters   (eg., UU for U235) 
atw   Atomic number/three numbers  (eg., 235) 
int  Reaction type   (eg., tot or sct for total  
                        or scattering) 

 

The secondary file is saved in the directory to be accessed by the interface (pre-
processing) program ENDFPR.f to be described. 
 

The above procedure is repeated for the elastic scattering cross section by 
replacing n,tot in the initial request (Fig. 2) by n,el.  All materials required for a 
particular investigation are found in the above manner and each will then have 
two (or three with fission) cross section data files (total and scattering) to be 
input into the next UfG processing step. 
 

b. UfG processing 
With the ENDF/B data now collected in an appropriate form for the required  
materials, we are ready to begin UfG processing.  To this end, a pre- processing 
code has been written to take the ENDF/B data generated and interpolate into 
the desired groups.  The input to the code ENDFPR.f is on file ENDFPR.dat 
and is given in Fig.6.  All the necessary information is provided in the following 
input description: 
 
     File: endfpr.dat 

c Input-------------------------------------------------------------- 
c Line 1 
c     ngp  number of gps to be made 
c     ne    Number of elements 
c     e0    Top energy 
c     el     Bottom energy 
c 
c Line 2   for ne elements 
c     aa    at wt 
c     an    density (atom density in 10-24 cm3) 
c     vf     relative factor like volume fraction 
c 
c Line 3 (Read in until EOF encountered) 
c     fnme  Element file name from ENDF (no more than 25  
c                                                                    characters) 
c                el.atw.xsc.dat 
c                el   = element 
c                atw  = At weight  
c                ID   = case ID 
c                int  = interaction ID (tot,sct,etc) 
c                dat  = data file 



26 
 

c-------------------------------------------------------------------- 
Note that 
    + No modification of the just-generated data files need be done. 
    + Any number of data files can be read in, but each set of two (total and 
       scattering Xsecs) must correspond to an element on line 2. 
    + A sub-energy domain of the data stored (e0,el) can be requested. 
    + The energy range is the minimum top and maximum bottom energies  
       of all requested energies on the Xsec files. 
 
The ENDFPR.f code serves as a linear interpolator of ENDF data to generate a 
multi- or ultra-fine-group structure.  Its output on file o62.dat, in turn, is input to 
the slowing down program series X2.f that solves the slowing down equation as 
described in § II.1.1. 
 
As a demonstration, we consider U235 in an (infinite) graphite matrix for a 
series of 10,100,1000 and 10000 groups in the range 1000eV to 2500eV.  The 
input is  
 

100 2  2500.0 1000.0     /ngp ne e0 el 
235.0  19.1   1.0             /AtwU  an vf 
12.0   1.6    1.0               /AtWC  an vf 
uu.235.t1.tot.dat 
uu.235.t1.sct.dat 
cc.012.t1.tot.dat 
cc.012.t1.sct.dat 

 
and the output is placed on file o62.dat, which for the case of 100 groups takes 
the following form: 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. ENDFPR.f output file o62.dat. 

Fig. 6. Input file directive for endfpr.f. 
 

100 2 
 235.0000000000000 12.00000000000000 
 10.95600000000000 1.600000000000000 
  4.000000E+03  1.778340E+01  1.201680E+01  4.730840E+00  4.734030E+00 
  3.944956E+03  1.778340E+01  1.201680E+01  4.730840E+00  4.734030E+00 
  3.890670E+03  1.886110E+01  1.187130E+01  4.730840E+00  4.734030E+00 
  3.837131E+03  1.886110E+01  1.187130E+01  4.730840E+00  4.734030E+00 
  3.784329E+03  1.768970E+01  1.181360E+01  4.730840E+00  4.734030E+00 
  3.732253E+03  1.768970E+01  1.181360E+01  4.730840E+00  4.734030E+00 
  3.680894E+03  1.796690E+01  1.182080E+01  4.730840E+00  4.734030E+00 
       ….    ….    …..   ….. 
       ….    ….    …..   ….. 
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Fig.8a. Xsecs for groups 10, 100, 1000. 

 

 
  Fig. 8b. Xsecs for above groups in Fig, 8a with the 10,000 group (in Black) 
case 
               added. 
 

Red      10 gps 
Blue   100 gps 
Pink 1000 gps 
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The first three lines give the desired number of groups and element information.  
Next, the first column is the energy for the 100 groups taken in equal 
logarithmic increments over the desired energy range.  This is then followed by 
the linearly interpolated total and scatter cross sections for the two elements.  
Figures 8a,b give a comparison of the granularity of these group configurations.  
As observed, at least to properly represent this region visually, a large number of 
groups are required.  Of course, the flux approximation is the ultimate indicator 
of merit. 
 
1.3 Selected results for infinite medium slowing down 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 1. Processing Flow Chart. 
 
We now numerically solve Eq(II.1.1.1).  To this end, Eq(II.1.1.1) is recast as a 
matrix equation in each panel of the form 
 

   1l l−=A qφ      (1) 
 

for panel l.  We use LU decomposition [3] to solve this equation for our initial 
trial.  If need be, other more efficient solvers will be tried.  A FORTRAN 
program X2.f has been written for this purpose and is placed second to the end 
of the data processing stream shown in Fig. 1.  Group configurations for N = 10, 
100, 1000, 5000 are considered.  Following the procedure outlined in §II.1.1, the 
groups were established for slowing down in a homogeneous mixture of U238 
and Na23 in the energy range 0.01eV < E < 200eV, where several prominent 
resonances of uranium occur.  The variation of the total elastic scattering cross 
section is shown in the upper plate of Fig. 2.  It should be noted that for N = 10 
and 100, the detail of the resonances is hardly apparent and for N = 1000 and 

Process elastic 
scatter transfer 
XS by Material 

o62.dat 

x2.dat 
o70.dat 

ENDF/B 
Data 

Extract micro 
XS for 

desired material 
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range to file 

Data capture endfpr.f 
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Output 
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5000, the fine-group configurations are virtually identical.  The bottom plate 
shows the detail of a  
 

 
   Fig. 2. Scattering Xsec exhibiting the multigroup configuration for test of 
              LU direct solver. 
 

 
             Fig. 3. Flux solutions for multigroup configurations for G = 10. 
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specific resonance, which is covered with adequate fidelity by 5000 (fine) 
groups.  This is a clear indication of the need for ultra-fine-group methods.  
Figure 3 shows the energy flux variation by group, /g gEφ Δ , for volume 
fractions 0.9 and 0.1 of 238U and 23Na respectively.  For each calculation, G, 
the panel group interval, was fixed at 10.  Even for N = 10, the general trend of 
the flux variation is followed.  For the last two configurations, the flux is nearly 
identical indicating a visually converged solution with respect to the number of 
energy groups.  The bottom plate shows an enlargement on a single resonance. 
 
The cumulative absorption on down scattering of all the resonances requires a 
sufficient number of groups for accuracy as indicated by the difference between 
the N = 100 and 1000 cases. 
 
From this basic investigation, we conclude that the panel method is viable and, 
more importantly, an enabling method simplifying a calculation that would 
normally be relatively difficult by conventional means.  The computational time 
for these examples was about 10s on a 1.2 GHz Gateway laptop, which is not yet 
fast enough. 
 
Finally, to demonstrate a true UfG calculation, 30K groups were considered over 
the specified energy range.  Figure 4 shows the flux variation with composition 
of the fuel and absorber.  All cases were for 3000 panels (G = 10).  The increase 
in flux depletion with increasing amount of fuel is quite apparent.  The bottom 
plate is a zoom on several resonances showing all their essential features. 
 
As another demonstration, the nominal case of 0.9/0.1 was performed with G = 
10(10)100.  Identical results to all digits and all panel intervals (G) were 
obtained with an increase of 24s to 29s over the G-variation.  Again, the 
computational time must be reduced for this algorithm to be competitive.  
Computational time however, is not as important as the benchmarking value this 
algorithm brings at this point.  
 
We present additional results in A1.SLC.PPT to be summarized as follows: 
 

Slide 1 gives a simple verification of the slowing down treatment, where a 
localized energy source in Carbon produces the anticipated 1/E flux after an 
initial inverted Plazcek transient. 
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                Fig. 4. Flux variation with composition for G = 10 and N =30,000. 
 

Slide 2 shows the results of a timing study to determine an optimal G.  For 
the direct inversion, it seems that for a fine-group calculation of a thousand 
groups, a G of 10 is optimal.   
 
Slides 3 and 4 are a case study of the 6.67eV Uranium resonance.  Here, as 
shown in Slide 3, the Single Level Breit-Wigner (SLBW) form of the 
resonance with a 1/E weighting flux is assumed in the analytical 
construction of the multigroup cross sections.  The energy range is from 
12eV to zero fitted by a uniform lethargy grid.  For this granularity, the 
resonance is generally captured with about 800 groups, again indicating the 
necessity of a FG/UfG grid. 
 
Slide 5a shows the many resonances over the range 2eV < E < 800eV with 
the source at the top energy requiring 7200 groups for adequate coverage. 
 
Slide 5b gives the relative error for G chosen to be 1 or 100 indicating near 
machine double precision.   
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Slide 6 shows what can be accomplish with 72K groups.  While for these 
calculations, the computational effort seems excessive, realize these are our 
first attempts without code optimization. 
 

 
Slide 1 

 

 
Slide 2 
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Slide 3 

 

 
Slide 4 
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Slides 5a,b 

 
 

(a) 

(b) 



35 
 

 
Slide 6 

 
1.4 Slowing down in the BL approximation 
The infinite medium case just considered represents a special case of the BL 
approximation.  In this approximation, the finiteness of a medium is expressed in 
terms of a buckling BL, but we retain the mathematics of an infinite medium.  
Direction now must be considered, making the calculation more complex.  This 
work was presented as a part of an INL short course held during the summer of 
2013 (A2.MG.BL.Approximation).  The derivation of the BL equations follows. 
 
The general slowing down equation in an infinite medium with general 
scattering and isotropic source is 
 
                                                                                                                      (1) 
 
where the group parameters are 
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Specifically, ( )µF  and q  are the group collision density vector and the imposed 
isotropic source strength vector respectively and 
 

  lF  is the Legendre moment: ( ) ( )
1

1
F Fllg gd Pµ µ µ

−

⎧ ⎫
≡⎨ ⎬

⎩ ⎭
∫   

       is the transfer scattering cross section coefficient 
  BL is the geometric buckling. 
 
Therefore, in fundamental matrix form, we have 
 

     (2) 
 
where                             with ( )µF  expressed as a matrix. 
 
Equation (2) is a Green’s function for full slowing down in an infinite medium 
with scattering order truncated at L.  This equation was one of the first to be 
solved to generate representative reactor specific cross sections. 
 
a. First solution 
Simply by projection over the Legendre polynomials, we arrive at a first solution 
in the form 
 

     (3) 
 
with 
 
 
 
 
 
 
 
 
 
b. Second solution 
A second set of moments equations is found by projecting Eq(2) over the 
Legendre polynomials Pj(µ) to give for j in [0,L] 
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     (4) 

 
with 
 
The general solution to the three-point recurrence is completely analogous to the 
solution to a second order ODE.  In particular, the solution consists of two 
complimentary solutions and a particular solution.  The procedure to find the 
analytical solution is outlined as follows: 
 
1. Express the solution in terms of homogeneous and particular solutions: 
 
 
2. Substitute into Eq(4): 
 
 
 
 
 
 
 
 
 
3. Set terms in brackets to zero: 
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   The inhomogeneous term for the second equation above is assumed to give 
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    if 
 

                
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1, 1 1
1 ,

l l l l

l l l l l l

z z z z

z z z z
l− − −

= +

= = +

0 g

I g

ρ

α ρ

u v

u v
 

 
   to give 
 

                
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

11 1 1
1 1

11 1 1
1 1

1

1 .

l l l l l l

l l l l l l

z z z z z
l

z z z z z z
l

−− − −
− −

−− − −
− −

⎡ ⎤− −⎣ ⎦

⎡ ⎤−⎣ ⎦

=

=

z g g

g g g

ρ ρ ρ

ρ ρ

v

u
 

 
5. The final expression: 
 

      (5) 
 
 
    with 
 
 
 
    Now introduce Eq(5) into Eq(3) to give the scalar collision density 
 

     (6) 
 
 
 
 
    which (with some algebra) can be shown to be 
 

          (7) 
 

 
where                                     with l

%f  either lg  or lρ  and Ql is a diagonal matrix 
of Legendre functions of the second kind. 
 
A monogenetic form of the above was presented at ICTT23 (A3.ICTT23). 
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Coding of this result will be completed in a future effort.  As a first example 
however, the following table represents an initial attempt presented at the Math 
and Comp 2013 Benchmarking Workshop (A4.MC13.Wkshp). 
 

 
Table 1. Zeroth moment for Helium with increasing anisotropy to L = 6. 

 
Table 1 gives the zeroth flux moment variation in lethargy u for increasing 
anisotropy (L) in Helium for the constant cross section approximation and BL = 
1, corresponding to a reactor on the order of width π.  Note that as lethargy 
increases the scalar flux become less dependent on the anisotropy.   
 
This is one of the first true analytical solutions to the BL equations for isotropic 
source emission and represents an advance in the numerical determination of 
flux moments. 
 
1.5 Generation of ENDF/B cross section data: Automated 
Using the PYTHON scripting language, the cross section data transfer from 
BNL/NNDC was automated and the following describes the process.  This work 
was presented at ICTT23 held in Santa Fe, NM/9.15.13 and was completed by 
the UfG software team (Dr. I. Guven and M. Futch).  The PPT presentation is 
reproduced here. 
 
The software tool consists of three parts 
 

Data Retrieval 
Analysis 
Review of Results 
 

L 
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arranged as shown in Slide 1.  The process is essentially the same as in §II.1.2, 
 

 
Slide 1 

 
where isotopes are selected and brought locally, processed by the UfG processor 
X2 and the flux plotted. 
 

 
Slide 2 
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To begin, “Data Retrieval” (Slide 2) is selected and by selecting “choose 
element” nuclides are selected from the list that appears as shown in Slide 3.  An 
element  
 

 
Slide 3 

 
is chosen and total and scattering microscopic cross sections are transferred by 
selecting “Retrieve Data” (Slide 2).  A list of the retrieved data is generated and 
one can plot individual cross sections if desired by selecting “Plot Data” and a 
desired entry (Slide 2) on the list.  Next, selecting “Data Analysis”, a cumulative 
list of the available nuclides appears for mixing as shown in Slide 4.  Those to 
be mixed according to a specified volume fraction are selected and a volume 
fraction entered.  When mixing is complete, “Analyze” is selected to run the X2 
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slowing down UfG processor with the selected data and plot the flux also shown 
in Slide 4.  The results are stored and can be recalled later for plotting as shown 
in Slide 5, which shows a U235/Carbon slowing down spectrum. 
 
A manual and movie for the installation and operation of the X2/UfG processor 
GUI are available upon request (GUI, The Manual and GUI, The Movie) 
 

 
Slide 4 

 

 
Slide 5 
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 II.2. TASK 2 Develop the panel algorithm for multimaterials. 
 While the analysis thus far has passively included multimaterials, there 
has been no special considerations for their inclusion.  During the third year of 
the grant, visiting student scholar Nicholas Terranova considered how to choose 
the group structure with regard to multimaterials.  In his ANS summary, 
A5.Adaptive.Mg, he presents a method for a more accurate choice of the 
multigroup structure for multimaterials.  In all previous calculations and 
demonstrations, a uniform lethargy grid has been assumed, which is most 
convenient but completely ignores the variation of the cross sections with 
energy.  Also, the uniform grid applies to all materials alike.  A more sensible 
approach is to use the data variation from the ENDF database itself to capture 
the variation.  In addressing Task 1, it was noted that each material for each 
interaction has cross section data at different energy entries.  For a uniform in 
lethargy grid, this requires interpolation to the chosen grid, again ignoring all 
variation.  If, instead, one grid, based on the cumulative set of all ENDF entries 
for each material of interest is constructed, then all variation, to the extent it is 
has been recorded in ENDF/B files, is now addressed.  However, this would 
require millions of groups and would not be feasible.  A first step in reconciling 
this issue would be to perform a thinning process that reduces the total number 
of energy points to a reasonable number.  In this task, we address the overall 
efficiency of using the uniform grid versus a non-uniform grid based on the 
actual data entries restricted to a limited number of groups.  The procedure that 
was developed is called Natural MG (NMG). 
 

2.1 Theory of the NMG approximation 
 

The theory of the NMG will be presented through consideration of the following 
slowing down equation in an infinite medium: 
 

( ) ( ) ( ) ( ) ( )
1

,
g

G

sf
g E

E E dE E E E Q Eφ φ
ʹ′

ʹ′= Δ

ʹ′ ʹ′Σ = Σ → +∑ ∫   (1) 

 

where the scattering and fission terms have been combined and the integration 
over the energy spectrum partitioned into G energy groups.  When we integrate 
Eq(1) over the group g and use the integral mean value theorem to remove the 
flux from the integral, we find the NMG equation 
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or in the usual multigroup form 
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if we define 
 

                    

{ } ( ) ( ){ }
( )

( )

, ,

1

1 .

g

g g

g g g g g g

g g
g E

gg sf
g E E

Q E E Q E E

dE E
E

dE dE E E
E

φ φ

ʹ′

Δ

ʹ′
ʹ′ Δ Δ

≡ Δ Δ

Σ ≡ Σ
Δ

ʹ′Σ ≡ Σ →
Δ

∫

∫ ∫

% %

 

 
It should be emphasized that Eq(2) is exact if the gE% were known.  Also, note 
that there is no weighting flux to be guessed if it is known.  This feature requires 
further investigation however. 
 
We now analyze the total cross section in the NMG approximation. 
 
A common practice in forming the energy groups gEΔ is to assume groups 
uniform in lethargy.  While certainly convenient, such a procedure entirely 
ignores the cross section variation and leads to missing data.  This can be 
especially catastrophic with regard to resonances.  For this reason, the NMG 
follows a more natural and evident path. 
 
To achieve a non-uniform group structure able to better match the data (from the 
ENDF database) and provide dense coverage near and within resonances, a 
smart way to construct the groups is to employ the information we already have 
in the database.  For example, one could consider the spectrum as a sequence of 
edit points, as given to us from the ENDF database.  Rather than associate the 
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same width to each energy group, we assign the same number of edit points 
from the original energy structure to the sequence.  The right boundary of a 
group will be midway between the edit points N and N+1, where N is the number 
of edit points per group.  The left boundary will obviously coincide with the 
previous group’s right boundary.  For the first group, the left boundary will be 
the minimum of the energy range selected. In this way, because of the ENDF 
data grouping, next to the resonance, where there will be a high density of values 
of retrieved cross sections, we will automatically have smaller groups. Since 
dividing the number of edit points available by the number of groups gives 
generally a reminder, we can associate these extra points to the last groups 
considered-- one per group. 
 
2.2. Numerical demonstration 
A FORTRAN program able to exercise the NMG was written. The code 
considers three different materials (U,O,H).  Since in the ENDF database each 
element has its own energy structure, before implementing our multigroup 
choice, an interpolation to the same energy boundaries for all materials was 
performed.  We now consider two ranges of energy in order to show the 
potential of this simple approach to generate a group structure. 
 
In Figs. 1a,b, the NMG group total cross section for U238 has been plotted for 
energy ranges of 3eV -8eV and 1000eV -2200eV.  The former shows the group 
structure regarding a single resonance of the U238; the latter instead shows a 
series of resonances.  By increasing the numbers of groups, it is clear the group 
cross sections converge to the data values enabling resolution of a significant 
number of resonances with only a modest number of groups (< 200). 
 
In Figs. 2a and 2b, a comparison between the NMG and a uniform lethargy 
subdivision structure is shown for the two ranges of energy considered.  The 
former is for a 50-group calculation in the 3eV -8eV range, the latter a 200-group 
calculation for 1000eV -2200eV.  Both figures show how much the NMG can be 
more precise than the conventional uniform method.  For the range of 3-8eV, in 
the NMG method, 72% of the groups reside under the single resonance at 
6.67eV, compared to the 20% for the uniform lethargy grid.  In addition, the 
resonance maxima are more faithfully reproduced with NMG.  Thus, the NMG 
can get more detail from the original nuclear data by increasing the number of 
groups under the resonances. 
 
Some limitations of the NMG were noted however.  For very wide ranges of 
energies (e.g., 1eV -10,000eV), including many adjacent resonances, and for a 
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relatively small number of groups (e.g. 200), some isolated resonances can be 
lost, even if the method still shows their position.  In fact, the NMG is inclined 
to concentrate the groups available in the regions of the spectrum with the high 
density of adjacent resonances.  This leads to lower precision where the 
resonance  
 

 

 
Fig.1. Variation of the number of groups for (a) single and 

                             (b) multiple resonances 
 
 

(a) 

(b) 
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Figs.2.  Comparison between the conventional and NMG 

         methods for (a) G = 50 calculation in 3eV -8eV 
                                range. (b) G = 200 group calculation in range 
                                1000eV -2200eV. 
 
density is not large.  So if we have ranges of the spectrum with clear differences 
in resonance densities, the regions with fewer resonances will be penalized.  
Therefore, a coarse subdivision of the spectrum is desirable before applying the 
NMG method in order to provide a sufficient number of groups to sense the 
details 
of each resonance. 
 
The NMG method requires further clarification before it can be widely 
implemented.  For this reason, and lack of time, it will possibly become a part of 
a future effort.  After its development, it become known to the PI that this 
method is actually implemented in the NJOY cross section data processing 
package [1]. 
  

(a) 

(b) 
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II.3. TASK 3 Establish a multigroup/fine- group converged 1D transport 
and diffusion accelerated algorithm in the panel formalism. 

 Before realizing full multipanel implementation, one must have an 
operational single panel option upon which to base the multipanel formulation.  
For this reason in this task, we primarily considered spatial approximations in 
the multigroup format for both transport and diffusion and in MATLAB and 
FORTRAN implementations. 
 
3.1 Diffusion theory 
The first approach considered by the PI and Elia Battistini, while a visiting 
scholar from the University of Bologna, was the analytical solution to the 
diffusion equation.  In addition, Elia performed an initial investigation into the 
corresponding finite difference (FD) solution.  These are programmed in 
MATLAB.  With a second visiting scholar, Nicholas Terranova, also from the 
University of Bologna, an equivalent FORTRAN approach was followed. 
 
a. Analytical/Numerical diffusion theory: MATLAB implementation 
a1. Analytical solution 
A6.Analytic M&C MG Diffusion Paper and A7.Analytic M&C MG 
Presentation, A8.EB.thesis 
 
The multigroup diffusion equation to be solved is 
 

( ) ( ) ( )
2

2
T

j j j fj sj j j
d
dx

x x x
⎡ ⎤

⎡ ⎤+ −⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦
− + =D Qφ χν φΣ Σ Σ   (1) 

 
or 
 

( ) ( )
2

2 1
2 j j j j

d
dx

x xΙ −
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦

+ =B D Qφ ,  (2) 

 
with 
 

( )2 1 T
j j fj j sj

− ⎡ ⎤−⎣ ⎦=B D χν −Σ Σ Σ .  (3) 

 
Subsequently, diagonalizing the resulting the G by G interaction matrix gives 
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     2 1
j j j j

−≡B Ζ Ω Ζ     (4) 
 
and for Eq(3b) 
 

   ( ) ( )
2

1 1 1
2 j j j j j j

d
dx

x x− − −
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦

+ =I D QΩ Ζ Φ Ζ ,   (5) 

 
where jΩ  is a diagonal matrix of eigenvalues.  The solution, expressed as 
homogeneous and particular parts, is 
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for a regionally uniform source.  j

±h  is a diagonal matrix of homogeneous 

solutions 
 

( ) ( ){ }; 1,...,jkj diag hx x k G±± ≡ =h .  (6b) 

 
where, for plane geometry 
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  (6c) 

 

Note that ( ) 1
jj j x
−+hα α  is what is referred to as a matrix function.  There are 

several ways of evaluating this quantity and matrix diagonalization is one 
possibility.  
 
Similar solutions can be found in Refs. [1] and [2]. 
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a1.1 Application of MATLAB version 
Before he applied his spatial diffusion MATLAB version, Elia determined the 
flux for pure neutron slowing down in an infinite medium of U238 with 300,000 
groups shown in Fig. 1.  The flux for the entire resolved resonance region is 
captured requiring less than 6 minutes on a 2.53 GHz Intel RCoreTM2 Duo 
T9400, 4Gb RAM, using MATLAB 32 bit version 2009b platform.  The detail 
is striking. 
 

 
 

 
Table 1a,b. Medium properties for first test case. 

 

2
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As a first application of spatial diffusion, a symmetric three-region reactor is 
assumed with a central depleted UO2 region and water reflectors.  A sinusoidal 
fixed source emits in the central region in each group.  The energy range is 
[1eV,1000eV] covered by 10 groups and the slab configuration properties are 
given in Tables 1a,b. 
 
Figure 2 shows the results of a benchmark application with the finite difference 
(FD) solution described in the next section.  The FD calculation is run for 
consecutively reduced mesh discretizations by a factor of 2.  The blue curve 
gives the groupwise mean relative error over 29 spatial points with respect to the 
analytical solution for decreasing discretization (increasing number of cells).  
Note how the error steadily decreases until 105 cells and then abruptly increases 
because of roundoff error.  The slope of the curve is two indicating that the FD 
scheme is of order 2.  The other curves represent accelerations of the FD 
solution to zero discretization as explained in the next section.  Observe, all 
accelerations indeed greatly accelerate convergence to nearly 10-12; whereas, the 
FD gives only a 10-4 relative error. 
 
The above comparison was performed for only 10 groups. If pushed to higher 
than 20 groups one encounters stability issues with regard to the diagonalization 
of the interaction matrix.  This negative result may indicate that the analytical 
diffusion 
 

 
            Fig. 2. Behavior of the mean relative error as a function of the number 
                       of cells per slab (with increasing iterations) for the 4 solution 
                       sequences (N = 10). 
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solution is not suitable for treating the fine granularity of resonances.  
Nevertheless, reproducing the spatial variation of the spectrum with such detail 
and accuracy, even just for a few group calculation, confirms that convergence 
acceleration is extremely promising not only for diffusion but, as we shall see, 
also for transport applications as well.  Thus, this has to be seen as a first step in 
including space dependence into FG/UfG benchmark development and should 
be a guide on how to do FG/UFG in transport theory. 
 
Elia most aptly states his conclusion concerning the analytical form as follows: 
 

……., one final comment needs to be made concerning what has been accomplished 
here. With a fully analytical solution to the 1D diffusion equation in heterogeneous 
geometries, one could think that there is no longer a need to use finite difference or 
finite element methods for the numerical solution of the problem. Given the generality 
of the new solution presented, there is apparently no need to use an approximate 
method when the analytical form exists in a concise and elegant fashion….. 
 
Unfortunately, during the implementation of the analytical solution, limits to its 
applicability have been uncovered. In particular, as anticipated …., the weak point of 
this method has proved to be the required inversion of [the eigenvector] matrix…, so it 
is strictly connected to nuclear data (i.e., [multigroup] parameters). Inverting a matrix 
is always a delicate numerical procedure; this is particularly true in our case, where the 
form of the matrix to be inverted is in some way defined by nature and almost any 
possibility to influence it seems unfeasible.  
 

There is a second difficulty associated with the analytical form.  When applied 
in the panel formalism, the limitation on the diagonalization could be overcome 
by simply making the panels less than 20 groups each since the analytical form 
works for this case.  Then the analytical solution could be used.  However, to 
maintain the analytical form for panels, the particular solution would have to be 
found analytically and this has yet to be satisfactorily accomplished. 
 
Finally, even with its shortcomings, as mentioned, the analytical solution can 
treat few groups in highly heterogeneous media with high accuracy.  As we shall 
see in the FORTRAN development below, multigroup/fine-group solutions to 
several hundred groups are still possible, which is significant even in today’s 
sophisticated computational environment. 
 
The analytical solution is truly a striking construction, which should have natural 
potential in the FG/UfG formalism.  This has not been found however, which 
was rather disappointing.  For this reason, we have moved forward to consider a 
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finite difference implementation, but will not give up on the analytical form so 
easily. 
a2. Finite difference (FD) solution  
(A8.EB.thesis) 
A straightforward finite difference scheme is achieved by simple uniform 
subdivision defining equidistant knots separated by the step-size h as shown in 
the following figure: 
 
 
 

Fig. 3. Uniform grid. 
 
One can now expand each group flux component in a Taylor series on either side 
of x (at x ± h) to give 
 

                                  𝛟 𝑥 ± ℎ = 𝛟 𝑥 ± ℎ𝛟 𝟏 𝑥 + !𝟐

!
𝛟 𝟐 𝑥 ± !

!!

!
𝛟 𝟑 𝑥 +

                                                                                                                                +𝐎 ℎ!   .                                                                                                             
 
By adding these equations and truncating the series at the fourth term, we 
deduce the following cell centered finite difference approximation: 
 

                                                                𝛟𝐣!𝟏 − 𝛂𝛟𝐣 +𝛟𝐣!𝟏 = −ℎ!𝐪𝐣  .                                                                        (1) 
 
The source has been redefined to include the inverse diffusion matrix and α  is 
the G×G block 
 

                                                                                    𝜶 ≡ 2𝐈 − ℎ!𝐁𝟐  .                                                                                       
 
The unknowns are the G- energy components of the flux for each knot of the 
spatial mesh, assumed to number n+1.  While the monoenergetic problem leads 
to a three-diagonal matrix connecting regions, in the multigroup problem we 
obtain a block triangular vector equation, whose diagonal elements are G×G 
matrices.  The solution then becomes a tri- diagonal block matrix inversion.  The 
above three-term recurrence persists within each slab of a heterogeneous 
medium.  Interestingly, both the analytical and FD forms lead to a three-term 
recurrence at internal interfaces, but with different coefficients. 
 
The one distinct advantage of the FD from of solution is that convergence 
acceleration can be readily used to achieve high accuracy.  This is done by 

x0        x1                                                  xj-1         xj        xj+1                                             xn-1      xn            
h 
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solving the FD form with reduced discretization by a factor of two and using 
either the Richardson or Wynn-epsilon [3] accelerators to accelerate 
convergence.  Richardsons acceleration simply sequentially eliminates higher 
order error terms to obtain higher accuracy discretizations for the group flux at 
each spatial point and gives the more accurate solution 
 

                                       
, 

 
where Rk,l is the g-group flux at position xj after the discretization has been 
reduced by a factor of 2k.  R0,0 is the original finite difference solution to Eq(1).  
The true solution is then obtained as the discretization approaches zero.  This is 
the same as the limit ,k lk

lim R
→∞

 and will generally converge more rapidly than the 

original FD sequence (for h/2k); hence, Richardsons sequence accelerates 
convergence.  The second sequence accelerator, Wynn-epsilon acceleration, is 
given in the following form: 
 

                       
,
 

 
which leads to the tableau 
 

                             
 
sn is the original sequence and ( )n

kε  is an estimate of the limit. 
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As an initial test case, again, a symmetric three-region reactor is assumed but 
with a central depleted U/Carbide region and graphite reflectors.  A uniform 
source emits in the top group in the central region.  There are 15 initial cells per 
slab and the energy range is [3eV, 800eV].  The slab configuration properties are 
given in Tables 2a,b.  We now consider a fine-group calculation of 5000 groups. 
 
As the mesh size is reduced, we find Fig. 4, which shows the spatially averaged 
error over all groups between iterates versus number of cells in the U/C and 
graphite slabs.  As can be observed the Richardson extrapolation gives an  
 

                    

   
 

2a. 

2b. 
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Fig. 4. Application of sequence accelerators. 

improvement of about a factor of about two, which is not particularly 
encouraging.  Also, it is not clear why W-e behaves so poorly. 

 

 
Fig. 5a. Spectrum across the fuel. 
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Fig.5b. Spectrum across the reflectors. 

In any case, we plot the spectral behavior in Figs. 5a,b across the slabs.  These 
figures are included to observe the change in the spectrum as one moves from a 
material with many resonances to one with none.  In particular, the spectrum for 
the reflector shows the same resonant behavior as the fuel near the interface.  
This is what makes homogenization so ineffective since one is averaging over 
large spectral variation unless the spatial grid is fine enough to capture the 
variation. 
 
From this investigation, one concludes that convergence acceleration has the 
potential to provide a distinct advantage over the central FD scheme, which 
indeed does admit FG solutions; while, MATLAB’s implementation of the 
analytical solution does not. 
 
We now consider the FORTRAN implementation of the analytical and FD 
solutions. 
 
b. Analytical/Numerical diffusion theory: FORTRAN implementation 
b1. Analytical solution 
Most likely, the relatively poor performance of the analytical solution is mostly 
a result of using MATLAB.  Even though MATLAB is optimized for matrix 
operations, it is quite slow for this application and therefore one has to sacrifice 
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either in number of groups or in spatial resolution for reasonable computational 
efficiency.  It is prudent therefore to code the analytical solution in FORTRAN, 
which is the goal of this section.  We presented part of this material at the 2009 
Hollywood Florida ANS Meeting A.9 Summary and A.10 presentation. 
 
b1.1. Numerical implementation 
There are two primary numerical procedures to be implemented for the 
evaluation of the analytical form of Eq(a1.1.6a).  The first is the diagonalization 
of the interaction matrix 2

jB .  While seemingly a straightforward matter, this 
turns out not to be the case as discussed in the last section.  The fundamental 
requirement for diagonalization is that the eigenvectors of the matrix be distinct, 
which is true when the eigenvalues are distinct.  Certainly, for the multigroup 
diffusion application, this will be the case and therefore all that is required is to 
solve for the eigenvalues of the interaction matrix.  We have identified several 
eigenvalue solvers including a sequence from Numerical Recipes [4] and the 
LAPACK option of the LAHEY compiler [5].  The LAPACK option has the 
advantage that it returns the eigenvectors and is therefore the preferred method.  
However, for pure down scatter, the eigenvalues are simply the diagonal 
elements and the eigenvectors follow directly from matrix inversion. 
 
The eigenvalues and eigenvectors are then part of the determination of the 
expression 
 

( ) ( ) 1
jj j jx x −± ±≡Η α αh , 

 
central to the evaluation of the analytical solution.  This seems to require the 
determination of the inverse of jα .  However, knowing jα  and ( )j x

±h  allows 
 

( ) ( )
T

j j j j
TT x x± ±⎡ ⎤

⎣ ⎦≡α Η α h  

 

to be solved for ( )j
Tx±Η  by LU decomposition, giving ( )j x

±Η  on transpose.  
Thus, one avoids an explicit determination of the inverse of jα . 
 
The second numerical procedure is the solution of the block triangular 
recurrence relation at slab interfaces 
 

1 2 ,   2j j j j jj j j n− −− − = ≤ ≤P fΜ Νφ φ φ , 
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where the coefficient matrices Mj, Nj, Pj, and fj are known [6].  The solution is 
found most efficiently using a block triangular solver with iterative error 
estimation. 
 
b1.2. Numerical demonstration 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Flow Chart for the analytical diffusion. 

For all demonstrations to follow, homogenous mixtures of fuel and water slabs 
with a fixed source are assumed.  The intent of the demonstration is to show 
clearly the weakness and strength of the analytical solution. 
 
As shown in Fig.1, the analysis proceeds in several steps, the first of which is the 
generation of a 64-group cross section set from the ENDF/B cross section 
library as described in Task 1.  The energy range to be investigated is from 
0.1eV to 10eV.  It should be emphasized that in this region, absorption in water 
is relatively small giving rise to an instability in the diagonalization of the 
interaction matrix for a pure water slab as will be shown. 
 
The second step is the generation of the scattering block assuming elastic 
scattering, also described in Task 1.  A summation of the out-scatter cross 
sections to all groups has been included as a check on the scattering block.  The 
sum should be the total scattering cross section by group, which is true for 
nearly all but the last few groups for all elements except elemental hydrogen.  
The discrepancy arises from the 1/E weighting spectrum, the granularity of the 
group structure and lack of a catchall dump group. 
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The first case considered is for a slab with zero current at the centerline and zero 
flux at the outer boundary.  The slab thickness is 0.5cm with a uniform source in 
the first group over half the slab thickness from the centerline.  For simplicity, 
fission returns neutrons uniformly to all groups, but any fission distribution can 
be considered.  By other means, the critical dimension is found to be 0.52750cm 
so the slab is surely subcritical. 
 
Figure 2 shows the flux spectrum across the slab for decreasing fuel volume 
fraction (VfF) and correspondingly increasing water volume fraction.  Notably, 
the flux takes on the spectral characteristic of the water, as one would expect 
with reduced fuel volume fraction. 
 
If, however, we consider a slab of pure water, the analytical solution gives an 
entirely unrealistic flux distribution as shown in Fig. 3. This is a predictable 
numerical phenomenon.  Table 1 gives the condition numbers for the matrix 
diagonalization for the fuel volume fractions considered.  As observed, the more 
pure water-like the slab is, the greater the condition number and the more ill-
conditioned the matrix diagonalization is.  This is a result of essentially zero 
absorption of the water causing the elements of the interaction matrix to differ 
by factors of more than 1040.  With double precision arithmetic, inversion of 
such a matrix is not possible.  However, when the absorption associated with 
just 10-6 volume fraction of fuel is added, the calculation stabilizes as shown in 
the graphical inset in Fig. 3. 
 
The final demonstration is for a heterogeneous slab composed of the three slabs 
of thicknesses 0.2cm, 0.35cm and 0.2cm with fuel fractions 0.85 0.05 and 0.85 
respectively.  The configuration is repeated 48 times to give a 144 region 
heterogeneous medium.  There is a uniform source emitting in the top group in 
every other slab, except for two slabs where the source is in group 23.  Figure 4 
shows the flux for every 4th group of a 200s calculation on a quad-core 2.5 GHz 
VAIO/Sony PC.  The evaluation is stable for this large diffusion problem and 
the positions of the asymmetric sources are clearly visible. 
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Fig. 2. Flux in a single U235/water slab with 

        increasing volume fraction of water. 
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Fig. 3. Failure of the analytical solution 
                                            for a single water slab. 
 

Table 1 
Condition numbers for matrix diagonalization 

VfF Condition 
Number 

1.0 81.9 
0.5 1.03×105 
0.1 1.09×106 

0.01 5.77×107 
10-6 9.17×1011 
0.0 8.19×1050 

 

 
 
b1.3. Remarks  
While the use of the analytical evaluation will most likely not be possible for a 
full 70K UFG application, its viability as a reliable analytical solution has been 
demonstrated here for multigroup and fine-group.  Arguably, the calculation for 
Fig. 4 is most likely the largest of its kind to date.  The analytical solution 
presented, should eventually find its way into the classroom as it represents a 
true analytical solution to a relatively realistic problem. 
 
b2. Finite difference solution  
(A11.FD.Diff.paper and A12.FD.Diff.Pres) 
(A13.NT.Thesis) 

           Fig. 4. An analytical diffusion demonstration. 
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With a demonstrated analytical multigroup diffusion calculation for 64-groups, 
we are in a position to construct a FD solution and test acceleration using the 
analytical solution for verification as was done with the MATLAB version. 
 
In this section, we conduct several numerical experiments concerning 
convergence acceleration of the FD approximations implementing Eq(a1.1.6a). 
Before giving the results, we provide some practical details concerning how one 
performs the accelerations and comparisons.  
 
Vector sequence acceleration is performed by applying the scalar extrapolation 
techniques described above to each flux component.  Each vector component is 
considered a single isolated term as we will be accelerating many sequences 
simultaneously.  The un-accelerated components will therefore be those referred 
to as the original edits of the starting grid (initial discretization level).  To 
compare accelerated FD results and the analytical solution, we have 
implemented an average relative error over components, which is simply the 
average of the relative errors of each flux component divided by the number of 
components. 
 
Performing convergence acceleration of a sequential discretization involves two 
sources of error.  The first is the truncation error that comes directly from 
keeping only a finite number of terms in the Taylor expansion responsible for 
the FD algorithm.  If stable, the error tends theoretically to zero for an 
infinitesimal step size.  The second is rounding error due to finite machine 
precision.  This greatly influences our accelerations after a certain point, leading 
to erratic behavior because of subtraction of similar numbers.  In the 
Richardsons extrapolation, we will observe an error explosion after an absolute 
minimum in the relative error.  In Wynn-epsilon (W-e) extrapolation, unstable 
oscillations also similarly occur.  Both instabilities result from numerical round 
off.  In particular, in W-e, division by zero can occur and therefore the algorithm 
must be stopped before this occurs. 
Numerical calculations have been performed using FORTRAN programming. 
Since our primary goal is to develop benchmark solutions using conventional 
machines, we performed our simulations using a laptop equipped with an Intel 
Core i7-2630QM processor and 6GB RAM.  We used two algorithms written in 
double precision.  The first one evaluates analytical solutions to the 1D 
multigroup diffusion equation in a heterogeneous medium as in §II.3.1.b.1; the 
second performs the FD calculations.  For the matrix formulation, the block 
triangular solver (matrix "two sweeps" algorithm) has been implemented using 
LAPACK [5]. 
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Group parameters were determined from the ENDF database as described in 
Task 1. 

b2.1. Multigroup calculations and comparison to analytical solutions 
We start by simulating a single-slab reactor, made of a homogeneous mixture of 
10% U235 and 90% light water and imposing zero current boundary conditions. 
We apply a superimposed unit source in the first energy group throughout the 
slab (energy range 0.1 eV -10eV).  In Fig. 1, the true relative error compared to 
the analytical solution is reported for a 5-group calculation, where for 
demonstration 
 

 
     Fig. 1. Spatial average relative error compared to the analytical solution 
                for a 5-group-single slab simulation. 
purposes, we forced 15 grid iterations starting from an original mesh of 11 
points.  
 
For this simulation, Richardsons extrapolation gives the best relative error 
(1.4x10-13) in just 4 grid refinements similar to what was found in §II.a1.1.  The 
magnitude of the relative error is indicative of a numerical quality representative 
of semi-analytical benchmarks.  We repeated the calculation to verify if the 
acceleration procedure is self-consistent, satisfying a practical convergence 
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criterion based on the average relative error when referred to the previous 
iteration since, in general, the analytical solution will not be known.  We 
obtained self-convergence with the same trends and errors of the same 
magnitude as shown in Fig. 1. 
 
Since numerical evaluation of the analytical solution for many groups (more 
than 64) are not readily available unless only absorbing materials are considered, 
we performed a three-slab 64-group simulation using 30%-enriched UO2 as fuel 
and 10%-borated water as moderator.  In Fig. 2, the relative error of the 
accelerated MG/FD scheme is presented as compared to the analytical solution.  
In all cases, we see the accelerated sequences approaching the analytical solution 
significantly more rapidly than the original sequence, constituted by the original 
solution obtained through successively finer grid subdivision. 
 
During our simulation campaign, we encountered some difficulties comparing 
the two solutions when small fluxes values (of the order of 10-5n/cm2-s) were 
involved, in particular, for fine meshes and for highly absorbing media.  Another 
issue was the tendency of the numerical evaluation of the analytical solution to 
be affected by ill-conditioning for purely scattering media as referred to in the 
previous section.  No ill-conditioning verification has been carried out for the 
FD schemes at this point other than in §b1 above.  In any case, we conclude as 
we did earlier that convergence acceleration is quite effective and that the error 
between iterations is representative of the true error. 
 
b2.2. Ultra-fine-group calculation for pure slowing down 
In addition, we performed a 10K-group calculation for a three-slab system made 
of a central fuel slab of 10%-enriched Uranium Dioxide, and two external water 
slabs, as shown in Fig. 3.  We considered the energy range of 0.1eV -10eV. In 
Figs. 4 and 5, the flux per unit energy in water and in fuel and the relative error 
as compared to the previous iteration are reported.  Convergence acceleration 
(here, only for Richardsons extrapolation) permits self-convergence significantly 
more rapidly than the original sequence.  Indeed, convergence acceleration 
enables accuracy to better than six places in less than 1000 points.  This is one of 
the first demonstrations of a FG (Fine-Group) converged accelerated semi-
analytical diffusion benchmark solution. 
 



66 
 

 
Fig. 2. Comparison for a three-slabs system and 64 energy groups. 

 

 
Fig. 3. System used in the ultra-fine simulations. 

 
Next, we attempt a 20K UfG calculation for the three-slab system.  In Fig. 6, the 
flux per unit energy in fuel and in water is presented.  Using convergence 
acceleration, we obtain a self-consistent relative error of 3.4×10-6 at the fifth 
iteration using Richardsons extrapolation with 481-edits; while, the original 
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sequence produced a 1.6×10-3 at the same iteration.  The calculation took 
23,811s, acceptable for a one-time semi-analytical benchmark calculation.  It 
must be  
 

 
                Fig. 4. 10K-group simulation for a three-slabs heterogeneous 
                            system.  Flux per unit energy in fuel and water. 
 

 
                       Fig. 5. Relative error compared to the previous iteration  
                                  for the 10K-group simulation. 
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                Figure 6. 20K-UfG simulation for a three-slabs heterogeneous  
                               system.  Flux per unit energy in fuel and water. 
 

remarked that this example did not use the panel formalism per se, as it used a 
single group-by-group cascade.  In any case, this is an example of a diffusion 
UfG at a practical error and meets one of our task objectives, but still requires 
excessive CPU time and is further indication of the need for HPC. 
 

b2.3. Remarks 
We have seen how convergence acceleration enables numerically generated 
semi-analytical multigroup/Fine-group diffusion benchmarks.  This was 
empirically shown through simple examples by comparison to the few- and fine- 
group analytical solutions.  In double precision, we obtained average relative 
errors for the flux components on the order of 10-12  for multigroup calculations 
(64-group ) and multiple slabs of different materials.  Since accurate evaluations 
of the analytical solution are not available for more than several hundred groups 
at this time, further demonstrations are needed for fine- and ultra-fine energy 
meshes.  Nevertheless, self-convergence has always been achieved in our 
examples.  Convergence acceleration, in fact, allows us to achieve practical self-
convergence in a few grid discretizations even for ultra-fine energy meshes 
using a cascade procedure (group by group) in a purely slowing down problem.  
However, it is obvious that HPC will be required for UFG calculations to 
become routine. 
 
c. Analytical diffusion theory: GPU implementation 
With the development of more affordable, multicore GPUs, highly parallel 
mathematical problems can be solved in a fraction of the time.  Large matrix 
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operations is one area that is well suited for GPU implementation.  With the 
acquisition of an NVIDIA Tesla C2075, with 448 CUDA cores, the system can 
realize 515 Gflops of peak double precision floating-point performance.  In this 
way, we hope to bring supercomputing speed to a standard PC.  We had 
envisioned solving the multi-group problem to upwards of tens of thousands of 
groups with MATLAB's optimized matrix operations and tight GPU integration 
however, this did not occur.  A basic analytical diffusion solution was 
programmed on the GPU.  The multigroup analytical solution  
 

( ) ( ) ( )1 1x x x+ − − −⎡ ⎤= −⎣ ⎦I h h q−φ α α α α  

 
is for a homogeneous slab with a uniform source in the top group and zero flux 
at the boundaries.  This solution was solved on the CPU using MATLAB's built 
in matrix functions requiring 61s for 101 spatial edits and 256 groups for U238.  
Next, a Taylor series form of the matrix functions was run on the CPU requiring 
44s.  Finally, the same method on the GPU took 20s.  Thus, we see a speedup of 
a factor of two.  We had expected a factor of 20 to 100.  We have now purchased 
a second GPU, which should give us the performance we expect. 
 
3.2 Transport theory 
(A14.MGCSN) 
Since extending diffusion theory to the panel formalism has proven to be 
elusive, it is quite apparent that doing the same for transport theory will prove 
equally, if not more, elusive.  This section, therefore, is included since, in the 
future, by incorporating HPC, it should be possible to apply the panel format to 
both transport and diffusion theory.  If true, then a multigroup transport theory 
capability will be required and this is what we now present.  Note that much of 
this work originated before the start of the grant, but has been continually 
updated. 
 
Two case are considered.  The first is new concept in discrete ordinates 
algorithms to determine the multiplication factor for a 1D nuclear reactor is 
presented.  The algorithm uses Richardsons and W-e accelerators (§II.2.a2) to 
accelerate a 1D multigroup Sn solution and eigenvalue to their continuum limits 
relative to space and angular discretization.  The feasibility of the MultiGroup 
Converged Sn (MGCSn) method is demonstrated on several criticality 
benchmarks found in the literature as well as for an infinite lattice. 
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The second application is a Fourier transform inversion for infinite medium 
transport and indicates the essence and potential of the multipanel approach. 
 
a. Determination of the multiplication factor k 
The multigroup transport equation to be solved in vector form in a homogeneous 
medium is 
 

       ( ) ( ) ( ) ( )0
0

1 1,
2 2

L
T

l sl l f
l

x P x x
x

µ µ µ
=

∂⎡ ⎤+ = +⎢ ⎥∂⎣ ⎦
∑I φ φ χν φΣ Σ Σ  (1a) 

 
( ),x µφ  is the group angular flux vector for G-groups and the Legendre 

moments are the group vectors 
 

( ) ( ) ( )
1

1
,l lx d P xµ µ µ

−

ʹ′ ʹ′ ʹ′≡ ∫φ φ .   (2b) 

 
χ  is the vector for the fission spectrum and fνΣ  is the vector { }g fgν Σ .  Initially, 
we assume zero incoming current 
 

( )
( )
0, 0

, 0.a

µ

µ

=

− =

φ

φ
     (2c) 

 
From discretization in the spatial and angular variables, the discretized transport 
equation to solve by sweeping across the slab, first in the positive directions and 
then the negative directions, is for 0mµ >  
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and for 0mµ <  
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where the collision source, 
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( ) ( ), 0
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1 1
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L
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mj l m sl l j j fj
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=

≡ +∑q φ χ ν φΣ Σ ,  

 
is lagged.  The slab is discretized and we apply half-range Gauss quadrature 
abscissae.  From integration over all directions and summing over all energy 
groups, there results for the multiplication factor 
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For the sum over energy groups, we have taken the inner product with respect to 
 

{ }1, =1,...,g G≡e . 
 

Other possibilities of forming a scalar equation for k exist like including a 
weighting factor, possibly the flux itself. 
 

All results to follow are found by applying either Richardsons or W-e 
acceleration to the iteration of Eqs(3) and (4) formed by reducing h by a factor 
of 2 and increasing n by two until convergence. 
 

a1. Preliminary results 
a1.1 Single homogeneous medium: Few-group 
Here, we consider only a single homogeneous medium.  In Ref. [7], there are 
three  
 

Table 1 
Single homogeneous medium two-group cases from Ref. [7] 

Case 1 
xc=1.7956023cm 

    

1 0.2208 0.0936 3.10 0.575 
2 0.3360 0.08544 2.93 0.425 

Transfer cross section matrix 
g,g´ 1 2 

1 0.0792 0.0432 
2 0.0 0.23616 

 
Case 2     
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xc=3.006375cm 
1 0.2160 0.06192 2.70 0.575 
2 0.3456 0.06912 2.50 0.425 

Transfer cross section matrix 
g,g´ 1 2 

1 0.07824 0.0720 
2 0.0 0.26304 

 
Case 3 
xc=7.830776cm 

    

1 0.268165 0.15024 0.0 1.0 
2 1.276976 0.060706 2.830023 0.0 

Transfer cross section matrix 
g,g´ 1 2 

1 0.247516 0.020432 
2 0.0 1.213127 

 
Table 2 

Converged results 
for homogeneous medium/two-groups: Case 1 
n N Original W-e 
1 36 8.29692E-01 8.29692E-01 
2 38 9.63041E-01 9.63041E-01 
4 40 9.90394E-01 9.97453E-01 
8 42 9.97562E-01 1.00011E+00 

16 44 9.99388E-01 1.00001E+00 
32 46 9.99847E-01 1.00000E+00 
64 48 9.99962E-01 1.00000E+00 

128 50 9.99991E-01 1.00000E+00 
256 52 9.99998E-01 1.00000E+00 
512 54 1.00000E+00 1.00000E+00 

 
Converged results 

for homogeneous/two-groups: Case 2 
n N Original W-e 

1 12 7.75386E-01 7.75386E-01 
2 14 9.50168E-01 9.50168E-01 
4 16 9.87115E-01 9.97019E-01 
8 18 9.96732E-01 1.00012E+00 
16 20 9.99179E-01 1.00002E+00 
32 22 9.99795E-01 9.99998E-01 
64 24 9.99949E-01 1.00000E+00 
128 26 9.99987E-01 1.00000E+00 
256 28 9.99997E-01 1.00000E+00 
512 30 9.99999E-01 1.00000E+00 
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Converged results 
for homogeneous two-groups: Case 3 

n N Original W-e 
1 12 3.44776E-01 3.44776E-01 
2 14 8.63737E-01 8.63737E-01 
4 16 9.65425E-01 9.90206E-01 
8 18 9.91271E-01 1.00008E+00 

16 20 9.97807E-01 1.00002E+00 
32 22 9.99456E-01 1.00001E+00 
64 24 9.99869E-01 1.00000E+00 

128 26 9.99973E-01 1.00001E+00 
256 28 9.99999E-01 1.00001E+00 
512 30 1.00001E+00 1.00001E+00 

 
relevant two-group cases shown in Table 1 for determination of the critical 
dimension (xc), where k has been set to unity to specify a critical system.  The 
results from the MGCSn code are given in Table 2 indicating exact agreement 
to these benchmarks at the final iteration for a requested 10-10 relative error.  The 
ability of the W-e algorithm to enhance convergence is demonstrated since five-
place convergence is achieved (shaded row), where the un-accelerated k has 
converged only to three-places.  Figure 1 shows the fluxes for these cases. 
 
a1.2. Heterogeneous medium 
The final demonstration concerns a four region/four group heterogeneous 
core/reflector medium.  Table 3 gives the nuclear properties for the core and 
reflector.  Each region is 30.48cm in width.  A multiplication factor of 1.246728, 
requiring more than 100 inner iterations per acceleration and completing in 
about seven accelerations, was found.  The number of inner iteration seems 
excessive, but not so, when one realizes that the code has yet to be optimized 
and these results are entirely preliminary.  The eigenflux is shown in Fig. 2a 
normalized to the number of fission neutrons.  This core was also modeled 
previously with diffusion theory [6], where the multiplication factor was found 
to be 1.246368, which is in relatively close to the transport result.  This should 
be expected since the reactor is large. 
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Fig. 1. Normalized fluxes for homogeneous 2- group benchmarks.
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Table 3 
Nuclear properties for 4-group/2-region reactor 

Fuel 
g      Sigt  (Nu)Sigf    Sigr       nu       Chi 
 1 2.4449E+00 9.7350E-04 5.89386E-02 1.0000E+00 7.3760E-01 
 2 1.2272E+00 1.1530E-03 6.72016E-02 1.0000E+00 2.6220E-01 
 3 1.0764E+00 1.7560E-02 7.30780E-02 1.0000E+00 2.0000E-04 
 4 3.7650E-01 2.3800E-01 1.75600E-01 1.0000E+00 0.0000E+00 

Transfer xsecs 
1 0.000000E+00 5.824000E-02 0.000000E+00 0.000000E+00 
2 0.000000E+00 0.000000E+00 6.644200E-02 0.000000E+00 
3 0.000000E+00 0.000000E+00 0.000000E+00 5.751800E-02 
4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

Reflector 
 g      Sigt  (Nu)Sigf Sigr        nu      Chi 
 1 1.6240E+00 0.0000E+00 6.20000E-02 0.0000E+00 0.0000E+00 
 2 6.6200E-01 0.0000E+00 4.46000E-02 0.0000E+00 0.0000E+00 
 3 5.0000E-01 0.0000E+00 3.65000E-02 0.0000E+00 0.0000E+00 
 4 3.4480E-01 0.0000E+00 3.50000E-03 0.0000E+00 0.0000E+00 

Transfer xsecs 
1 0.000000E+00 6.930000E-02 0.000000E+00 0.000000E+00 
2 0.000000E+00 0.000000E+00 4.450000E-02 0.000000E+00 
3 0.000000E+00 0.000000E+00 0.000000E+00 3.640000E-02 
4 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 

 

We now use the above core configuration to demonstrate a lattice cell 
calculation.  With reflective boundary conditions, the multiplication factor of 
Eq(4) becomes for a lattice cell 
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since the boundary current vanishes.  Figure 2b shows the eigenflux for this 
case, where the zero current condition at the outer surfaces is clear. k is 1.247781 
and compares well with the diffusion theory result [6] of 1.247483. 
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Fig.7a.   Eigenflux for the four group/four region model.
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Fig.7b.   Eigenflux for the four group/four region model.
x

N
or

m
al

iz
ed

 F
lu

x

 
 
Since, with the vanishing of the boundary current, the cell becomes isolated, we 
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have an excellent intuitive benchmarking opportunity.  We can assemble 
adjacent unit cells and check if the multiplication factor remains unchanged, 
which should provide a stringent test of any algorithm.  This was done for 
2,4,8,16 cells with the multiplication factor remaining constant to six places as 
shown in Table 4.  The anomaly at two cells is somewhat curious however.  If, 
for this case, each region is further divided in two and the computation repeated, 
then the two-cell result becomes 1.247780, which compares well with the rest. 
 
As shown in Fig. 3 , the flux for 16 cells behaves intuitively as expected. 
 

Table 4 
Multiplication factor for 4-region/4-group lattice cells 

Cells k 
1 1.247781 
2 1.247488 
4 1.247781 
8 1.247779 

16 1.247781 
 

 
 

Fig. 3. Infinite lattice of 16 cells. 
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b. MG/FG/UfG transport solution in an infinite medium 
MG.FG.Inf.Medium 
b1. Single panel solution 
Here, we suggest a possibility for a FG/UfG solution using the panel formalism 
for slowing down in an 1D infinite plane medium.  The presentation will 
essentially be PPT slides from this past summer’s short course developed for 
INL. 
 
We begin with the MG solution as the precursor to FG/UfG solutions.  The 
multigroup transport equation is shown on the first slide.  This is the Green’s 
function in plane geometry. With the substitution shown, the bottom equation is  
 

 
 

Slide 1 
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Slide 2 
the fundamental matrix equation to be solved in direct space. 
 
In slide 2, a Fourier transform is taken to bring the equation to a matrix set in 
transform space.  Now it is a matter of projection to find the transformed 
moments as shown in slide 3.  This is the first of two moments equation, which 
can be solved directly for all required moments. 
 

 
Slide 3 

 

 
Slide 4 
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A second moments equation is derived by simply projecting the bottom equation 
on Slide 2 over Legendre polynomials to give the last equation on Slide 4.  This 
moments equation is not closed; but is a three-term recurrence with the 
analytical solution shown as the second equation on Slide 4 with the scalar flux 
( )0 ;k µʹ′Ψ   

 

 
Slide 5 

 

 
Slide 6 

 
to be determined.  The ( )l zg  and ( )l zρ  are the Chandrasekhar matrices of the 
first and second kinds respectively.  ( )0 ;k µʹ′Ψ  is found by substitution of the 
first moments equation for j = 0 into the second and, after some algebra, one can 
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show the first equation on Slide 6, where ( )l zQ Σ  is a diagonal matrix of 
Legendre functions of the second kind of order l. 
Finally, we take the inverse Fourier transform shown on Slide 7.  As indicated, 
the inversion will be performed numerically [3], about which more will be said. 

 

 
Slide 7 

 
b2. FG/UfG transform solution for an isotropic source 
If, in the solution on Slide 8 { },1, 1,...,l l pGδ≡ =q  and we multiply by ½ and 

integrate over µ ʹ′, the scalar flux transform vector for isotropic source emission 
results 
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which we must invert.  This equation is also 
 

             ( ) ( ) ( ) ( )0Lk k k kΦ =A B q ,  (2a) 
 
where 
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Note that for pure down scatter, all the matrices in Eq(2) are lower triangular and 
the Eq(2a) schematically has the form shown in Slide 8.  Horizontal panels have 
been superimposed on the full lower triangular matrix.  Each panel naturally, 
partitions into a leading triangular matrix along with trailing blocks. 
 

 
Slide 8 

 
When the flux vector is partitioned into vectors by panel  
 

     ( ) ( ) ( ) ( )0 1 2, ,....,L pk k k kφ φ φ⎡ ⎤Φ = ⎣ ⎦    (3) 

 
for p panels each of G groups, the scalar flux in panel l becomes  
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, , 1,..., 1l j j l= −A  are the matrix blocks in panel l and ,l lA  is the leading lower 

triangular matrix.  ( )lBq  is the lth term on the RHS of Eq(2a).  This shows the 
economy of the panel method, where p•(G x G) inversions must be performed 
rather than a full pG x pG inversion. 
b3. FG/UfG transform inversion for an isotropic source 
We now must invert the transform in Eq(4) to give 
 

       ( ) ( )1
2l l

ikxdkx e k
π

∞

−∞

= ∫φ φ     (5) 

 
for the scalar flux spectral/spatial distribution.  The procedure is as follows: 
 

1. A sequence of positive spatial points, xj, is chosen. 
2. The flux for the first point is determined from the numerical Fourier 
transform inversion with the integrand ( )l kφ  saved in the order called by 
the inversion as it proceeds to completion. 
3. The flux for the second point is determined using the stored integrand.  
If additional integrands are required for convergence of the inversion, they 
are added to the list in storage. 
4. This procedure is repeated for all positions. 

 
In this way, only a minimum of evaluations of Eq(4) are necessary at the 
expense of storage. 
 
While this algorithm has yet to be tested, it shows promise at least in the FG 
application.  A conference paper based on this algorithm is currently in progress 
for the PHYSOR2014 meeting to demonstrate FG. 
  



84 
 

      II.4. TASK 4 Verification of CENTRM in infinite geometry. 
          (A15.ICONE12.paper, A16.ICONE12.Presentation) 

The purpose of this task is to provide a verification the CENTRM 
(Continuous ENergy TRansport Module) code, an option in the ORNL/SCALE 
code package, with an entirely independent slowing down transport model.  The 
function of CENTRM is to produce an ultra-fine-group characterization of the 
neutron spectrum as neutrons slow down to become thermalized.  This is the 
most comprehensive attempt to date to treat neutron absorption in the almost-
impossible-to-characterize resolved resonance region.  This task is the primary 
responsibility of UTK guided by Dr. Maldonado with the work performed by 
graduate student R. Joseph both of whom have access to SCALE and 
CENTRM as well as the UfG code , X2.f, developed in Task 1. 

 
4.1 Preliminaries 
a. SCALE cross sections 
To begin the comparison to CENTRM [1], microscopic cross sections (total and 
scattering) were obtained from the BNL/NNDC according to the prescription 
given in Task 1.  We also obtained the total and scattering cross sections from 
SCALE [2].  This was done using the modules ‘pickeze’ and ‘charmin’ from the 
AMPX code package (available from RSICC).  
 
The comparison between the microscopic cross sections from BNL and those of 
SCALE 6.0 for U235 total and scattering are shown in Figs. 1a,b.  The energy 
range is 1000eV to 2500eV.  The comparison indicates that the cross sections are 
indeed different.  This is, to some extent, due to the larger number of the cross 
sections accessed by SCALE in the range of interest than available from the 
BNL data.  The BNL data has approximately 6,200 data points; whereas, the 
SCALE data has almost 137,300 points.  This inconsistency gives different 
interpolated values as is observed.  In addition, SCALE obtains its data from 
ENDF/B-VIII-CE (continuous energy); whereas, X2 from ENDF/B-VII, 
which, because of data, may explain part of the difference, but certainly not all. 
 
The CENTRM module is a part of the SCALE 6.0 package and is usually run in 
a shielding or criticality study; however, here it is run as a standalone code in 
order to compare the results to the X2 code.  The particular case to be considered 
is for a mixture of U235 and graphite.  The CENTRM code outputs the flux and 
macroscopic (total and scattering) as a function of energy. To ensure data 
consistency, it was confirmed that the CENTRM case was for zero scattering 
order, no inelastic scattering and 0ºK temperature. 
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Fig. 1a. Comparison of total microscopic cross sections between SCALE and  
             BNL. 

 

 
Fig. 1b. Comparison of scattering microscopic cross sections between SCALE  
              and BNL. 
 
4.2 CENTRM/X2 comparison 
The macroscopic cross sections obtained from CENTRM are shown in Figure 2.  
For uniformity and to avoid the microscopic cross section discrepancy observed 
above, the X2 cross section preparation code ENDFPR was run for the same 
mixture with the microscopic cross sections generated by SCALE.  This ensures 
that the same cross sections are used as input to both codes.  The resulting 



86 
 

macroscopic cross sections from ENDFPR and CENTRM are compared in 
Figure 3.  The comparison confirms that the ENDFPR and CENTRM codes are 
now calculating with similar macroscopic cross sections.  The slight differences 
in peaks are due to the different energy edits, where cross sections are recorded 
in the two codes. 
 

 
 

 

Fig. 2. Macroscopic cross sections from CENTRM. 

    Fig. 3. Comparison of calculated macroscopic cross  
               sections in X2 and CENTRM. 
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To provide a further check, a case with just Carbon was simulated with SCALE 
cross sections in both codes to verify fundamental slowing down.  The resulting 
energy flux (group flux per energy) distribution is shown in Fig. 4 in the range 
[1000eV, 2500KeV] indicating the expected 1/E flux variation.  Similar 1/E 
behavior is seen at other energies.  The lack of exact agreement is most likely a 
scale factor due to source normalization.  This study shows that CENTRM and 
X2 are correctly simulating elastic scattering, at least, in Carbon to a source 
normalization. 
 

 
 
X2 with the same mixture of U235 and graphite was run with the cross sections 
from SCALE.  The resulting fluxes from X2 and CENTRM are compared for 
the energy range [1000eV, 2500eV] in Figure 5a.  Generally, good agreement 
between the flux distributions is observed.  One notable difference is in the way 
the source is specified giving discrepancy at high energy.  Given that the source 
is specified in a range above 2500eV in CENTRM [2580eV, 3000eV] and at a 
point at 2500eV in X2, the data was reported starting at 2200eV so that the 
source should not greatly influence the result.  In addition, CENTRM’s 
computational methods are more complex that X2’s, so slight differences in the 
results are to be expected. 
 
X2 with the same mixture of U235 and graphite as before, was then run in a 
lower energy range.  This energy range has fewer resonances, and thus should 
allow the resonances to be more precisely resolved.  The resulting flux 
comparison is given in Fig. 5b for the energies between 80eV and 100eV.  Now, 
we observe very good agreement, but there still seems to be a scale error. 

            Fig. 4. Comparison of fluxes in X2 and CENTRM for  
                       slowing down in Carbon. 
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               Fig. 5a. Comparison of fluxes in X2 and CENTRM 

                                            [1000eV, 2200eV]. 
 

 
                       Fig. 5b. Comparison of fluxes in X2 and CENTRM 
                                    [80eV, 100eV]. 
 
In an attempt to improve upon the results, the source energy was made similar in 
both codes by a slight modification to the X2 code.  Because there is no way to 
change the source energy in CENTRM, the X2 code was modified so that the 
source group could be specified by the user.  For this case, the source was placed 
between 2580eV and 3000eV.  The improved results are shown below in Fig. 6a.  
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Fig. 6a. Comparison of fluxes in X2 and CENTRM with 

                                user-specified source capability [1000eV, 2200eV]. 
 
As can be seen from the figure the flux comparison (normalized differently than 
in Fig. 5a) has significantly improved with the user-specified source capability 
in X2.  As one would expect, the sources being defined similarly in both 
problems is important for a true comparison.  
 
As done previously, we re-ran X2 with the added capability at lower energies.  
As expected, the results, shown below in Fig. 6b are similar to those previously. 
 

 
      Fig. 6b: Comparison of fluxes in X2 and CENTRM  

                                        with user-specified source capability [80eV, 100eV]. 
 
While we do not achieve relative errors representative of analytical benchmarks, 
we do see graphical agreement between the two different slowing down 
formulations.  The flux distributions generally follow the resonance shapes 
relatively closely.  Given data variability and that the algorithms were developed 
entirely independently, better agreement should not be expected. 
 

1.00E-‐04	  

1.00E-‐03	  

1.00E-‐02	  

1.00E-‐01	  
1.0E+03	  1.2E+03	  1.4E+03	  1.6E+03	  1.8E+03	  2.0E+03	  2.2E+03	  2.4E+03	  

Fl
ux
	  p
er
	  u
ni
t	  l
et
ha

rg
y	  

Energy	  (eV)	  

CENTRM	  
X2	  

1.00E-‐04	  

1.00E-‐03	  

1.00E-‐02	  
8.00E+01	   8.50E+01	   9.00E+01	   9.50E+01	  

Fl
ux
	  p
er
	  u
ni
t	  l
et
ha

rg
y	  

Energy	  (eV)	  

CENTRM	  

X2	  



90 
 

4.3 X2/MCNP comparison 
For further confirmation, a Monte Carlo calculation was performed with 
MCNP5 to compare to the results of our UfG code. “Energy bins” were placed 
in MCNP5 to estimate the flux as a function of energy.  The results of this 
comparison are presented in Fig. 7.  Again, general agreement is noted. 
 

 
Fig.7. X2/MCNP5 comparison. 

 
4.4. Summary 
One conclusion from the CENTRM verification study is that no better than a 
graphical comparison is possible.  Benchmarking to more than two digits will 
not be possible because of several reasons.  Most prominent among these is that 
the cross section data is simply too variable.  Also, group generation is different 
between the two calculations with the X2 generated set most likely more 
accurate than that of SCALE. 
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II.5. TASK 5 Creation and testing of the diffusion multigroup algorithm 
in spherical and cylindrical geometries. 

   (A17.Analytic M&C MG Diffusion Paper, A18.Analytic M&C MG Pres) 
5.1 Analytical fine-group solution in spherical and cylindrical geometries  
For this task, the analytical diffusion solutions in spherical and cylindrical 
geometries are derived.  These geometries are appropriate for pebble bed fueled 
and conventional cylindrical fuel rodded reactors.  Here, we test only the 
analytical solution in cylindrical geometry for the multigroup/fine-group 
approximation.  In addition, and more of theoretical interest, the finite difference 
solution to the multigroup cylindrical diffusion formulation is presented and 
shown to limit to the analytical solution. 
 
a. Analytical diffusion solutions 
a1. Spherical and cylindrical geometries 
Consider the general diffusion equation in a homogeneous region j of a 
heterogeneous medium 
 
               ( ) ( ) ( )2 T

j j j fj sj j jx x x⎡ ⎤ ⎡ ⎤+ −⎣ ⎦⎣ ⎦− + =D Qφ χν φ∇ Σ Σ Σ   (1) 
 

with the usual nuclear data in matrix form 
 

  { };  1,...,j gjdiag D g G≡ =D  

  { };  1,...,j gjdiag g G≡ Σ =Σ  

  { };  , 1,...,sj gg j g g Gʹ′≡ ʹ′Σ =Σ  

  { } ; , 1,...,T
gfj fg j g g Gνχ ʹ′≡ ʹ′Σ =χνΣ  

 

and the group flux and source vectors 
 

( )

( )
( )
( )

( )

1

2

3

...

j

j

j j

Gj

x
x

x x

x

φ

φ

φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

≡φ          ( )

( )
( )
( )

( )

1

2

3

...

j

j

j j

Gj

Q x
Q x

x Q x

Q x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

≡Q . 
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The analytical solution obtained by diagonalization of the interaction matrix 
(A19.Anal.MG) is 
 

( ) ( ) ( )
( ) ( ) ( )

1

1
1 1 .        

j j j jj Pj

j j jj Pj Pj

j

j

x x x

x x x

−

−
− −

+

−

⎡ ⎤= −
⎣ ⎦

⎡ ⎤−
⎣ ⎦

+

+ +

φ α α φ φ

α α φ φ φ

h

h
  (2) 

 
For down scatter and no fission neutrons appearing in the energy region of 
interest, the eigenvector matrix takes the following form: 
 

21

1

... ...  1 0 0
... ...1 0

... ... ... ... ...

... ... ... 1 0
... ... ... 1

j

j

j
G

α

α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

≡α . 

 
With 2

jB  as the eigenvalue matrix of the interaction matrix diagonalization 
 

   { }2 2 ; 1,...,j jkdiag B k G≡ =B , 

 
the independent solutions to the diffusion equation are 
 

                                ( ) ( ){ }; 1,...jkj diag hx x k G±± ≡ =h  

 
or rearranged in terms of primitive solutions  
 

                      

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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1 1, , , ,

, , , ,

1 1, , , ,

jk jk jk jk

jk jk jk jk

j jh j h j h j h j
jk

j jj jh j jk h j jk h j jk h j jk

j jh j h j h j h j
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j jj jh j jk h j jk h j jk h j jk

B x B x B x B x

B x B x B x B x

B x B x B x B x
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B x B x B x B x
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− −+
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+ − − +
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Φ Φ Φ Φ

Φ Φ −Φ Φ

Φ Φ Φ Φ

Φ Φ −Φ Φ
.⎥⎥
⎥⎦
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For 1D plane, spherical and cylindrical geometries ,h j
±Φ  are the independent 

solutions to Helmholtz equation appropriate to each geometry.  Specifically, 
these are for 
 

a. Spherical geometry 
 

( )
( )
( ), 

;

sin  
cos

jk
h j

xBx x x
±

⎧
⎪
⎨
⎪⎩

Φ =           (3) 

 
b. Cylindrical geometry in the central region, 

 

( )
( )
( )
0

,
0 ,h j

J x
x

Y x
± ⎧⎪

Φ = ⎨
⎪⎩

              (4a) 

 
     or for the outer regions 

 

( ) ( )
( )

(1)
0

, (2)
0 ,h j

H x
x

H x
±

⎧⎪
Φ = ⎨

⎪⎩
              (4b) 

 
where J, Y, H are Bessel functions of the first, second and third kinds.  Note that 

( )j x
±h  has been constructed to be  

( ) ( )
( ) ( )

1

1

1,   0

0,   1.

j j

j j

j j

j j

x x

x x
−

−

+ +

− −

= =

= =

h h

h h
 

 

The particular solution ( )Pj xφ  is constant for an assumed constant source over 

region j.  The conditions at material boundaries determine the interfacial fluxes 
1j−φ  and jφ . 

 
a2. Numerical demonstration in cylindrical geometry 
Now for a demonstration of the evaluation of the analytical solution in 
cylindrical geometry.  All the input detail is presented in order to serve as a 
reference for the deliverable and future developments. 
 



94 
 

Essentially, the same evaluation procedure is used as for plane geometry with 
the program flow chart reproduced in Fig. 1 for convenience.  A 6-region 
cylindrical 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 Code Flow Chart 
 

core composed of alternating fuel and water will be simulated as shown in Fig. 
2. 
 
 
                                                U235        H2O    U235 H20 U235     H20 
 
 

Fig. 2. Simulated cylindrical core. 
 
The following is the detailed input to the modified a3ufg.f: 
1. Make Xsec.files for energy range of interest from ENDF/B 
 

  aa.u235.tot.dat 
  aa.u235.sct.dat 
  aa.u235.ng.dat 
  aa.u235.fis.dat 
  aa.o16.tot.dat 
  aa.o16.sct.dat                                    
  aa.o16.ng.dat 
  aa.h1.tot.dat 
  aa.h1.sct.dat 

x2.dat 
o70.dat 

o71dat 
o25.dat 

Run 
algorithm 

a3ufg.f 

o3dat 
o32.dat 

Flux 

ENDF/B 
Data 

Extract micro 
XS for 

desired material 
over energy 
range to file 

Data capture 

Xsec.files
s 

o62.dat 

endfpr.f 
Process ENDF 
data in columns 
of interactions 
for the energy 

range of interest 
 

Process elastic 
scatter transfer 
XS by Material 

x2.f 

endfpr.dat 

Fuel is always the first position 

 To make H2O 

Oxygen 

Hydrogen 

Oxygen 
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  aa.h1.ng.dat 
   

aa.B.tot.dat 
  aa.B.sct.dat 
  aa.B.ng.dat 
  aa.XXX.tot.dat 
  aa.XXX.sct.dat 
  aa.XXX.ng.dat 
  ….. 
 

Note that Boron has been include to be able to add sufficient absorption if the 
matrix diagonalization becomes unstable. 
 

2. endfpr.f: Xsec processing 
  endfpr.dat 

 
     

o62.dat  

#gps, #materials, final E, initial E 

if element  
At Wt No 
if molecule  
At Wt No of 
molecule 

density of 
element or 
molecule 

atoms per 
molecule—1.0 
if an element 

At Wt No for 
elastic scatter 

Not used 

Fuel 
  Tot              Sct            Abs         Fiss 

Boron 

Additional Materials 
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3. x2.f: UfG Processor 
    x2.dat 

 
 

o70.dat (Input in a3ufg.f) 
This file becomes the header to o71.dat 
 2                                /1 pl/  2 cy/  3  
-1                               /lapack 
 -1   -1   -1   -1   3     /ng itml itmr nor ick isp(3) 
1.0d-10  25  1          /err,ns,litr 
1.0  0.0                   /ak, ra (Not used) 
xx gp test case for diagonalization 
transfer cross sections 
 

o71.dat: Note a 4-gp example—specifies all Xsec and region bdrys to solver 

        Mat 1 ....... 
Tot         Sct   ….. 

E 



97 
 

 
volfr.dat: Specifies volume fractions for including Boron 
1.0  0.0  0.0  0.00    af/Mat5: fuel/O:H/B 
0.0  0.99 0.99 0.01  af/Mat6: fuel/O:H/B 
 
The four entries indicate the composition of materials 5 and 6 with B.  The 
entries are the volume fractions for fuel, O, H and B.  For this case, the densities 
of O and H have been prepared to give consistent atom densities for water on file 
endfpr.dat. 
 
4. o3.dat: Output  
     x/Gp             1                 2                3                 4                   5 
0.000000  52.42600e-9  0.012098  0.011721  359.5900e-6  7.300400e-3… 
0.020000  59.09300e-9  0.012099  0.011721  362.2700e-6  7.301600e-3… 
0.040000  81.65400e-9  0.012101  0.011722  370.3800e-6  7.305300e-3… 
0.060000  128.8900e-9  0.012104  0.011724  384.1600e-6  7.311500e-3… 
0.080000  219.5600e-9  0.012109  0.011726  403.9800e-6  7.320300e-3… 
0.100000  390.6100e-9  0.012115  0.011729  430.4000e-6  7.331500e-3… 
0.120000  713.3400e-9  0.012123  0.011732  464.1700e-6  7.345200e-3… 
0.140000  1.325200e-6  0.012132  0.011736  506.2500e-6  7.361400e-3… 
……………………………………………………………………………… 
……………………………………………………………………………… 
o3.dat: SigmaPlotTM file--giving 
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for all 64 groups with uniform sources in the water channels. 
b. Analytical FD approximation in cylindrical geometry 
    (A20.AFD Approximation) 
The numerical workhorse for computing the flux from diffusion theory is the FD 
approximation as demonstrated in §II.3.1.  Usually, once one establishes the 
approximation, little thought is given to its solution other than its numerical 
implementation.  Because of the lack of attention to the analytical finite 
difference solution, valuable numerical information is lost.  Here, our intent is to 
outline a FD algorithm first and then seek its analytical solution through a limit 
afterwards.   
 
b1. The FD algorithm 
In fundamental form, the multigroup equation in cylindrical geometry is  
 

( ) ( )2 11
j j j j

d dr r rr dr drΙ −⎡ ⎤
−⎢ ⎥

⎣ ⎦
+ =B D Qφ . 

 
On diagonalization of the 2

jB  matrix, we arrive at the diagonalized one-group 
equations for a homogeneous 1D cylindrical medium (subscript j is dropped) 
 

Energy g 
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         ( ) ( ) ( )21 d dr r B r q r
r dr dr

φ φ⎛ ⎞ + = −⎜ ⎟
⎝ ⎠

      (1) 

 
for a general source and where B2 are eigenvalues of the interaction matrix of 
region j.  The source will not concern us at this point because we are interested 
only in the solutions to the homogeneous equation since the particular solution 
comes directly from these. 
 
Forming a central difference approximation gives 
 

( ) ( )1 12 1 2 2 1 2j j j jj j j jhqφ αφ φ+ −+ − + − = − ,   (2a) 
 
where 
 

  
2 22 h Bα ≡ − .     (2b) 

 
Note that we have evaluated the FD approximation at the knots r = jh. 
 
Now consider the homogeneous equation associated with Eq(2a) 

  ( ) ( )1 12 1 2 2 1 0j j jj y j y j yα+ −+ − + − = .    (3) 
 
Through a series of substitutions and manipulation, one finds two 
complimentary solutions of Eq(3) [1] (after some algebra)  
 

( ) ( ) ( )
( )

( )( )21
22

0

1
1/ 2

2 !

k k
kj

j k
k

y j
k
λ α

γ
∞

−

=

− ⎡ ⎤= −
⎣ ⎦∑ .     (4a) 

                   

( ) ( ) ( )
( )

( )( ) ( )
( )

( ) ( )
( )

( )( )

1 /2
22

22
0

1
2

22
1

1
1/ 2 2

2 !

1
                 1 / 2 ,

2 !

k kj
kj

j k
k

k k
k

kk
k

y j j k
k

j H
k

λ α
γ ψ

λ α

⎡ ⎤+⎣ ⎦
−

=

−∞

=

−
= − − +

−
+ −

∑

∑
 (4b) 

 
where 
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( ) ( )( )
2

2 2α α
λ α

α

− +
=  

2
γ

α
=  

( )
2 1

1

12
1/ 2

1 .

j k

j a

k

k
k

j k
j

H
k

ψ
− −

ʹ′=

ʹ′=

− =
ʹ′+

≡
ʹ′

∑

∑
 

 
Hence, Eqs(4) represent two independent solutions of the homogeneous FD 
equation [Eq(2a)] with the general complementary solution 
 

( ) ( )1 2
j j jy Ay Cy= +       (5) 

 
to which one adds the particular solution.  We now seek the two complementary 
solutions and their limit to zero discretization. 
 
b2. The limit as 0h→  and j→∞  
In both independent solutions, λ to order h2 is 
 

( ) ( )2 2 21B h O hλ α ⎡ ⎤= +⎣ ⎦  

 
and 

2 2
1 1

2
B h

γ − = −  

 
which, when introduced into ( )1

jy  gives 
 

( ) ( )
( )

( ) ( )( )
2

21 2
22

0

1
1 / 2

2 !

k k k j k
j k

k

B
y O h hj h

k

∞ +

=

− ⎡ ⎤⎡ ⎤= + −⎣ ⎦ ⎣ ⎦∑ . 

 
In the limit to the true solution with jr r hj≡ =  kept fixed as h and j approach 
zero and infinity respectively, we find 
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( ) ( ) ( ) ( ) ( )
( )

( )
2

1 1
0220 0

1
lim

2 !

k k

j j kh kj

Br
y y r J Br

k

∞

→
=→∞

−
= = =∑ . (6a) 

 
Similarly, for the second solution 
 

( ) ( )
( )

( ) ( )( )
( )

( )

( )
( )

( ) ( )( )

1 /2 2
22 2

22
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The limit of this expression for fixed jr r=  is therefore 
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by noting that the sum is a Riemann sum representation of an integral and 
introducing a multiplicative factor B.  Note that the lower limit is arbitrary. 
 
Finally, on substitution into the second solution 
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and identifying the first sum as the first kind Bessel function gives 
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To conform to the Weber form of the Bessel function of the second kind, we let 
  

( ) ( )ln ln 2aBr γ≡ − +  
 
and set the constant C1 to 2/π to give 
 

   ( ) ( )
( )

( ) ( )
( )

( )
0

2
1 2 0

22
1

ln
22
1
2 !

k k

kk
k

Br J Br

y r Y Br
Br

H
k

γ

π −∞

=

⎧ ⎫⎡ ⎤⎛ ⎞ + +⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪
= =⎨ ⎬

−⎪ ⎪+⎪ ⎪
⎩ ⎭
∑

 (6b) 

 
where γ is the Euler-Mascheroni constant. 
 
While the analytical solutions just found can be directly obtained simply by 
inspection of the diffusion equation in cylindrical geometry, the value of the 
above analysis is the challenge of developing a complete solution from 
discretization alone.  That is, we start from a basic FD approximation and arrive 
at the analytical solution in the limit.  In this way, one develops numerical 
approximations based on several levels of the FD form.  The levels are the 
numerical evaluations of the FD approximation of Eq(2a) itself, Eqs(4) or the 
analytical solution of Eqs(6).  This is particularly important in heterogeneous 
media in the multigroup approximation.  Since the findings of our research thus 
far indicate that for the UfG panel algorithm, the analytical solution is far too 
costly for practical application, it becomes necessary to design a highly accurate 
FD algorithm.  We now have several options from which to choose in cylindrical 
geometry, which leads into the final task. 
 

II.6. TASK 6 Burnup mapping with analytical diffusion theory 
 
6.1 Burnup application 
We introduce the final task to be a representative application of the basic 
research performed thus far.  Hence, a Ph.D. dissertation was proposed for R. 
Joseph pertaining to the development of a multigroup burnup benchmark.  
Burnup in conjunction with the analytical diffusion solution and the isotopics 
code ORIGIN [1] in cylindrical geometry was thought to be a new and 
therefore, an appropriate topic to showcase the results or our NEUP grant. 
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With the completion of the analytical solution in heterogeneous cylindrical 
geometry, it becomes possible to consider a relatively realistic application.  
Thus, in this task we consider burnup in a cylindrical fuel pin.  We anticipate the 
advantage of applying the analytical solution is its ability to treat multigroup 
diffusion in a highly heterogeneous medium.  We envision the average 
cylindrical fuel rod to be segmented into concentric cylindrical regions, where 
each region is representative of a burnup level.  This would mean that each 
concentric cylindrical would contain different isotopes, which could easily be 
handled by the analytical formalism.  The analysis would necessarily require 
time be added in some fashion as well as an isotropic generator like ORNL’s 
ORIGIN.  Initially, we will consider a quasi-static approach, with isotopic 
updating at the end of each time step.  One could also envision a full time 
dependent calculation in the future however.  
 
Initial progress has been made in becoming familiar with ORIGIN through 
study of the manual and performing some tests.  One of the issues that had to be 
resolved is how to specify an input flux in ORIGEN instead of a burnup.  A 
second difficulty encountered was how to handle the changed flux spectrum 
after each run of the analytical solution, now called the Analytical Diffusion 
Code (ADC).  These issues have now been resolved.  We can transfer the final 
flux energy map after running the ADC as the initiating source to the next time 
step using ADC to advance the burnup cycle.  In addition, one of the main tasks 
was to modify ADC to input cross sections for more than six materials.  The 
code modifications include allowing input of volume fractions for more than 4 
materials, modifying the input file to input how many base materials and mixed 
materials are in the problem, and other general modifications of calculations 
needed because of the unknown number of materials coming from each burn 
cycle. The code has been partially tested for computational consistency but 
unfortunately, further testing will be delayed indefinitely because of the 
termination of the UfG project. 
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III. MODIFIED TASK COMPLETION PERCENTAGES 
 

TASK 1: Status: 100% 
TASK 2: Status: 100% 
TASK 3: Status:   75% 
While the status of Task 3 is not 100% complete, significant strides 
have been made.  In particular, multigroup/fine-group forms for both 
analytical and finite difference diffusion theory as well as 
multigroup/fine-group transport theory have been established.  This is 
a necessary first step in developing the UfG panel formalism.  The 
next step is to enable the panel formulation both theoretically and 
computationally.  This requires analytical forms for the particular 
solution in the case of diffusion theory.  It is also clear that to proceed, 
HPC will be required.  This was the primary factor in purchasing large 
and small exploratory GPUs, which eventually will be programmed 
for the panel method. 
TASK 4: Status: 100% 
TASK 5: Status: 100% 
TASK 6: Status:   10% 
This task was begun late in the fourth year.  The parameters of the 
dissertation have been defined; but the task has been postponed 
indefinitely, since the grant has ended.  Robby Joseph has returned full 
time to his ORNL position.  This task may or may not ever be completed.  
If not, the fault is clearly attributable to the short sightedness of the DoE 
manager. 

  



107 
 

IV. PERSONNEL 
Co-PI  (UA):  

Dr. C. Chan 
Professor  

   Department of Aerospace and Mechanical Engineering 
   University of Arizona 
 
   Dr. I. Guven 

Assistant Professor 
   Department of Materials Science 
   University of Arizona 
 

Co-PI  (UTK):  
Dr. I. Maldonado 

   Associate Professor 
   Department of Nuclear Engineering 
   University of Tennessee 
 

Graduate Students: 
   A. Farber 
   Graduate Student (hourly) 
   AME Department 
   University of Arizona 
 

   R. Joseph 
   Graduate Student 
   Nuclear Engineering Department 
   University of Tennessee 
 

Undergraduates (UA): 
Blake Tye   (Freshman/Undecided) 
Allison Sheesley (Freshman/Undecided) 
Michael Futch (Freshman/MSE) 

      Matthew Avitian (Senior/AME) 
   Angel Tellez (Senior/AME) 
 

Visiting Scholars (Italy): 
Elia Battistini 
Department of Energy Systems 

   University of Bologna 
   Italy 



108 
 

 
   N. Terranova 

Department of Energy Systems 
   University of Bologna 
   Italy 
  



109 
 

V. PUBLICATIONS AND PRESENTATIONS 
1. Publications 
1. B.D. Ganapol and D.W. Nigg, High Order Finite Difference Approximations 
to the One-Group Neutron Diffusion Equation in 1D Heterogeneous Media Part 
I: Theory In Plane Media, PHYSOR2010. 
2. B.D. Ganapol and D.W. Nigg, High Order Finite Difference Approximations 
to the One-Group Neutron Diffusion Equation in 1D Heterogeneous Media Part 
II: Implementation and Application, PHYSOR2010. 
3. E. Battistini, Semi-Analytical Benchmark for Neutron Slowing Down in 
Multigroup Transport and Diffusion Theory, Thesis, University of Bologna, 
2010. 
4. E. Battistini, et. al., Paneling Strategy for Ultra-Fine-Group Slowing Down 
Numerical Benchmarks, ANS Winter 2010 Mtg. 
5. E. Battistini, et. al., Convergence Acceleration for Multipanel Fine-group 
Finite Difference Numerical Benchmarks, ANS Winter 2010 Mtg. 
6. B D. Ganapol, et. al., Implementation of an Analytical Multigroup Diffusion 
Solution in 1D Heterogeneous Media, M&C Topical Mtg., Brasil, 2011. 
7. B.D. Ganapol, et. al., The Solution of the Point Kinetics Equations via 
Converged Accelerated Taylor Series (CATS), PHYSOR2012, Knoxville TN, 
April 2012. 
8. R.A. Joseph, III, et. al., The Ultra-Fine-Group Panel Method for Neutron 
Slowing Down, Proceedings of the ICONE20-POWER2012, Anaheim CA, Aug. 
2012. 
9. N. Terranova and B.D. Ganapol, An Adaptive Natural Multigroup for Neutron 
Slowing Down, ANS Proceedings Chicago, June 2012. 
10. N. Terranova, Numerical Benchmarks for Multigroup Diffusion Theory, MS 
Thesis, University of Bologna, 2012. 
11. B.D. Ganapol, Chandrasekhar Polynomials and the Solution to the Transport 
Equation in an Infinite Medium, TTSP, submitted. 
 
2. Presentations 
1. B.D. Ganapol and D.W. Nigg, High Order Finite Difference Approximations 
to the One-Group Neutron Diffusion Equation in 1D Heterogeneous Media Part 
I: Theory In Plane Media, PHYSOR2010. 
2. B.D. Ganapol and D.W. Nigg, High Order Finite Difference Approximations 
to the One-Group Neutron Diffusion Equation in 1D Heterogeneous Media Part 
II: Implementation and Application, PHYSOR2010. 
3. B.D. Ganapol, Paneling Strategy for Ultra-Fine-group Slowing Down 
Numerical Benchmarks, ANS Winter 2010 Mtg. 



110 
 

4. B.D. Ganapol, Convergence Acceleration for Multipanel Fine-group Finite 
Difference Numerical Benchmarks, ANS Winter 2010 Mtg. 
5. B.D. Ganapol, Implementation of an Analytical Multigroup Diffusion 
Solution in 1D Heterogeneous Media (Brasil M&C Topical Mtg). 
6. Meeting with M. Williams, I. Maldonado, R. Joseph at ORNL, May 2011. 
7. At meeting with R. Joseph at UA December 2011, Knoxville TN. 
8. At meeting with R. Joseph and I Maldonado, Tucson AZ, January 2012. 
9. PHYSOR2012:Workshop on Convergence Acceleration applied to reactor 
physics. 
10. R.A. Joseph, III, et. al., The Ultra-Fine-Group Panel Method for Neutron 
Slowing Down, Proceedings of the ICONE20-POWER2012, Anaheim CA, July 
2012. 
11. B.D. Ganapol, An Adaptive Natural Multigroup for Neutron Slowing Down, 
ANS Proceedings Chicago, June 2012. 
12. I. Maldonado and R.A. Joseph, OECD Short Course Paris, 2012. 
13. B.D. Ganapol and I Guven, ICTT23, Sept 2013. 
14. B.D. Ganapol, INL Short Course, Summer 2013. 
  



111 
 

V. DELIVERABLES (Upon Request) 
1. UfG/X2 GUI 
    Automated cross section generation  
    X2.f/ENDFPR.f 
    GUI, The Manual 
    GUI, The Movie 
 
2. 1D/Analytical diffusion solution (Plane, spherical, cylindrical  
     geometries) 
    a3ufg.folder 
    MATLAB.folder 

  
3. 1D/FD diffusion solution 

     Converged accelerated FD solution 
  
 4. Converged accelerated Sn solution 
     MGCSn.folder 


	09-807 NEUP Final Report 1
	NEUP 09-807 Final Report

